

cover

A Coverage Analysis Tool for Erlang
The module cover provides a set of functions for coverage analysis
of Erlang programs, counting how many times each executable line of
code is executed when a program is run. Executable lines are
lines in the body of a clause in a function, case,
receive, or try. Lines in clause heads, blank lines, and lines
containing only comments are not executable.
Coverage analysis can be used to verify that test cases covers all
relevant line in the code being test. It can also be helpful when
looking for bottlenecks in the code.
Before any analysis can take place, the involved modules has to be
cover-compiled. This means that some extra information is added to
the module before it is compiled into a binary which then is
loaded. The source file of the module is not affected and no .beam
file is created. If the runtime system supports coverage natively,
Cover will automatically use that functionality to lower the execution
overhead for cover-compiled code.
Change
Native coverage support was added in Erlang/OTP 27.

Each time a function in a cover-compiled module is called, information about the
call is added to an internal database of Cover. The coverage analysis is
performed by examining the contents of the Cover database. The output Answer
is determined by two parameters: Level and Analysis.
	Level = module
Answer = {Module,Value}, where Module is the module name.

	Level = function
Answer = [{Function,Value}], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A
as a tuple {M,F,A}.

	Level = clause
Answer = [{Clause,Value}], one tuple for each clause in the module. A clause
is specified by its module name M, function name F, arity A and position
in the function definition C as a tuple {M,F,A,C}.

	Level = line
Answer = [{Line,Value}], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file
N as a tuple {M,N}.

	Analysis = coverage
Value = {Cov,NotCov} where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and
NotCov is the number of executable lines that have not been executed.

	Analysis = calls
Value = Calls which is the number of times the module, function, or clause
has been called. In the case of line level analysis, Calls is the number of
times the line has been executed.

 Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system
has to be selected as the main node, and all Cover commands must be
executed from that node. The error reason not_main_node is returned if an
interface function is called on one of the remote nodes.
Use cover:start/1 and cover:stop/1 to add or remove nodes. The
same cover-compiled code will be loaded on each node, and analysis
will collect and sum up coverage data results from all nodes.
To only collect data from remote nodes without stopping cover on those nodes,
use cover:flush/1
If the connection to a remote node goes down, the main node will mark it as
lost. If the node comes back it will be added again. If the remote node was
alive during the disconnected period, cover data from before and during this
period will be included in the analysis.

 Summary

 Types

 Table Of Contents - tools v4.1.1

 Table of contents

 	Tools Release Notes

 	User's Guides

 	cover - The Coverage Analysis Tool

 	cprof - The Call Count Profiler

 	The Erlang mode for Emacs

 	fprof - The File Trace Profiler

 	lcnt - The Lock Profiler

 	Xref - The Cross Reference Tool

 	References

 	Erlang mode for Emacs

 	

 	Modules

 	cover

 	cprof

 	eprof

 	fprof

 	lcnt

 	make

 	tags

 	tprof

 	xref

 Tools Release Notes - tools v4.1.1

Tools Release Notes

This document describes the changes made to the Tools application.

 Tools 4.1.1

 Fixed Bugs and Malfunctions

	Fixed some deprecated errors on emacs-29.
Own Id: OTP-19273 Aux Id: PR-8879

	The cover tool could sometimes wrongly report lines as uncovered.
Own Id: OTP-19289 Aux Id: GH-8867, PR-8919

	Fixed tprof:format(IoDevice, ...) to not demand unicode encoding supported by IoDevice.
Own Id: OTP-19299 Aux Id: PR-8949

 Tools 4.1

 Fixed Bugs and Malfunctions

	tprof no longer crashes when using pause/restart/continue when profiling all modules.
Own Id: OTP-19136 Aux Id: GH-8472, PR-8472, PR-8541

	On systems supporting native coverage, calls to cover could hang or crash if cover-compiled module had been reloaded from outside cover. This has been corrected so that cover now recovers from the error and and sends a report to the logger about the failure to retrieve coverage information.
Own Id: OTP-19203 Aux Id: GH-8661, PR-8742

 Improvements and New Features

	Figures in the documentation have been improved.
Own Id: OTP-19130 Aux Id: PR-7226

 Tools 4.0

 Fixed Bugs and Malfunctions

	Dialyzer warnings due to type specs added in dbg have been eliminated.
Own Id: OTP-18860

	In Erlang/OTP 26, doing a cover analysis on the line level would return multiple entries for lines on which multiple functions were defined.
For example, consider this module:
-module(foo).
-export([bar/0, baz/0]).

bar() -> ok. baz() -> not_ok.
In Erlang/OTP 26, analysing on the line level would return two entries
for line 4:
1> cover:compile_module(foo).
{ok,foo}
2> foo:bar().
ok
3> cover:analyse(foo, coverage, line).
{ok,[{{foo,4},{1,0}},{{foo,4},{0,1}}]}
4> cover:analyse(foo, calls, line).
{ok,[{{foo,4},1},{{foo,4},0}]}
In Erlang/OTP 27, there will only be a single entry for line 4:
1> cover:compile_module(foo).
{ok,foo}
2> foo:bar().
ok
3> cover:analyse(foo, coverage, line).
{ok,[{{foo,4},{1,0}}]}
4> cover:analyse(foo, calls, line).
{ok,[{{foo,4},1}]}
Own Id: OTP-18998 Aux Id: GH-8159, PR-8182

	Fixed align command in emacs mode.
Own Id: OTP-19026 Aux Id: PR-8155

 Improvements and New Features

	Triple-Quoted Strings has been implemented as per EEP 64. See String in the Reference Manual.
Example:
1> """
 a
 b
 c
 """.
"a\nb\nc"
Adjacent string literals without intervening white space is now a syntax error, to avoid possible confusion with triple-quoted strings. For example:
1> "abc""xyz".
"xyz".
* 1:6: adjacent string literals without intervening white space
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18750 Aux Id: OTP-18746, PR-7313, PR-7451

	There is a new tool tprof, which combines the functionality of eprof and cprof under one interface and adds heap profiling. It also has functionality to help with profiling process hierarchies.
Example:
1> tprof:profile(lists, seq, [1, 16], #{type => call_memory}).

****** Process <0.92.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]
ok
Own Id: OTP-18756 Aux Id: PR-6639

	Native coverage support has been implemented in the JIT. It will automatically be used by the cover tool to reduce the execution overhead when running cover-compiled code.
There are also new APIs to support native coverage without using the cover tool.
To instrument code for native coverage it must be compiled with the line_coverage option.
To enable native coverage in the runtime system, start it like so:
$ erl +JPcover true
There are also the following new functions for supporting native coverage:
	code:coverage_support/0
	code:get_coverage/2
	code:reset_coverage/1
	code:get_coverage_mode/0
	code:get_coverage_mode/1
	code:set_coverage_mode/1

Own Id: OTP-18856 Aux Id: PR-7856

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Improved the align command in emacs mode.
Own Id: OTP-19080 Aux Id: PR-8288

 Tools 3.6

 Improvements and New Features

	Map comprehensions as suggested in EEP 58 has now been implemented.
Own Id: OTP-18413 Aux Id: EEP-58, PR-6727

	The instrument module has been moved from tools to runtime_tools.
Own Id: OTP-18487 Aux Id: PR-6829

 Tools 3.5.3

 Improvements and New Features

	Removed the previously undocumented and unsupported emem tool.
Own Id: OTP-17892 Aux Id: PR-5591

 Tools 3.5.2

 Fixed Bugs and Malfunctions

	Erlang-mode fixed for newer versions of xref using CL-Lib structures instead
of EIEIO classes.
Own Id: OTP-17746 Aux Id: GH-5314, PR-5324

 Tools 3.5.1

 Fixed Bugs and Malfunctions

	The cover tool would not work on modules compiled with the tuple_calls
option.
Own Id: OTP-17440 Aux Id: GH-4796

 Tools 3.5

 Fixed Bugs and Malfunctions

	For cover-compiled code, the error behaviour of list and binary comprehensions
that used andalso/orelse in guards could be changed so that a filter that
was supposed be evaluated in guard context was evaluated in body context. That
is, there was a possibility that comprehensions that did not raise exceptions
could raise exceptions when being run using cover.
Own Id: OTP-17221 Aux Id: PR-4547

 Improvements and New Features

	Support for handling abstract code created before OTP R15 has been dropped.
Own Id: OTP-16678 Aux Id: PR-2627

	Add types and specifications for documentation.
Own Id: OTP-16957

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

 Tools 3.4.4

 Fixed Bugs and Malfunctions

	cover would crash when compiling a module having an exported function named
clauses.
Own Id: OTP-17162 Aux Id: GH-4549, PR-2997, PR-4555, elixir-lang/elixir#10666

	If beam_lib is asked to return abstract code for a BEAM file produced by
Elixir and Elixir is not installed on the computer, beam_lib will no longer
crash, but will return an error tuple. The cover:compile_beam() and
cover:compile_beam_directory() functions have been updated to also return an
error tuple in that situation.
Own Id: OTP-17194 Aux Id: GH-4353

	Make emacs mode work on emacs-27.
Own Id: OTP-17225 Aux Id: PR-4542, GH-4451

 Tools 3.4.3

 Fixed Bugs and Malfunctions

	Correct the Xref analysis undefined_functions to not report internally
generated behaviour_info/1.
Own Id: OTP-17191 Aux Id: OTP-16922, ERL-1476, GH-4192

 Tools 3.4.2

 Fixed Bugs and Malfunctions

	Correct the Xref analysis exports_not_used to not report internally
generated behaviour_info/1.
Own Id: OTP-16922 Aux Id: PR-2752

 Tools 3.4.1

 Fixed Bugs and Malfunctions

	Correct the Xref analysis locals_not_used to find functions called
exclusively from on_load functions.
Own Id: OTP-16854 Aux Id: PR-2750

 Tools 3.4

 Improvements and New Features

	Updates for new erlang:term_to_iovec() BIF.
Own Id: OTP-16128 Aux Id: OTP-15618

	Improved the presentation of allocations and carriers in the instrument
module.
Own Id: OTP-16327

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

 Tools 3.3.1.1

 Fixed Bugs and Malfunctions

	cover would crash when compiling a module having an exported function named
clauses.
Own Id: OTP-17162 Aux Id: GH-4549, PR-2997, PR-4555, elixir-lang/elixir#10666

 Tools 3.3.1

 Fixed Bugs and Malfunctions

	An Emacs warning due to lacking type in defcustom declaration has been fixed.
Own Id: OTP-16356

	Improve emacs indentation.
Own Id: OTP-16472 Aux Id: ERL-1140

	The cover tool could generate instrumented code for a module that would cause
warnings to be issued.
Own Id: OTP-16476 Aux Id: ERL-1147

	Fixed generated fprof analysis format to also handle
data in maps.
Own Id: OTP-16498 Aux Id: ERL-814

 Tools 3.3

 Fixed Bugs and Malfunctions

	Improve -spec indentation in emacs mode.
Own Id: OTP-16164

 Improvements and New Features

	The Emacs erlang-mode function that lets the user open the documentation for
an Erlang/OTP function in an Emacs buffer has been improved. Bugs in this
function has been fixed and and the user will now be asked if the man pages
should be downloaded automatically by Emacs when they can't be found on the
system. To test this functionality, put the cursor over the function name in a
call to an Erlang/OTP function (e.g., "io:format("arg")") and type C-c C-d
(i.e., Ctrl-key and c-key and then Ctrl-key and d-key). There is also a new
menu item under the Erlang menu (labeled "Man - Function Under Cursor").
Own Id: OTP-16174

 Tools 3.2.1

 Fixed Bugs and Malfunctions

	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

 Tools 3.2

 Fixed Bugs and Malfunctions

	Add cprof and tags modules to .app file so that they are included in
releases.
Own Id: OTP-15534 Aux Id: PR-2078

	Improved documentation parsing in emacs erldoc functionality.
Own Id: OTP-15699 Aux Id: PR-2184

 Improvements and New Features

	The cover tool now uses the counters module instead of ets for updating
the counters for how many times a line has been executed. By default, Cover
will work with distributed nodes, but a new function cover:local_only/0
allows running the Cover in a restricted but faster local-only mode.
The increase in speed will vary depending on the type of code being
cover-compiled, but as an example, the compiler test suite runs more than
twice as fast with the new Cover.
Own Id: OTP-15575

 Tools 3.1.0.1

 Fixed Bugs and Malfunctions

	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

 Tools 3.1

 Fixed Bugs and Malfunctions

	Minor fixes for make clean.
Own Id: OTP-15657

 Improvements and New Features

	In the HTML file generated by cover:analyse_to_file/1,2, a link is now added
to the line number. This makes it easier to share pointers to specific lines.
Own Id: OTP-15541

	Uncovered lines are now marked with a sad face, :-(, in the HTML output from
cover:analyse_to_file/1,2. This is to make these lines easier to find by
search.
Own Id: OTP-15542

 Tools 3.0.2

 Improvements and New Features

	Remove emacs warnings and added more tests.
Own Id: OTP-15476

 Tools 3.0.1

 Improvements and New Features

	The HTML pages generated by cover:analyse_to_file/1 and related functions is
improved for readability.
Own Id: OTP-15213 Aux Id: PR-1807

	Add alignment functionality in emacs.
Own Id: OTP-15239 Aux Id: PR-1728

 Tools 3.0

 Improvements and New Features

	Added instrument:allocations and instrument:carriers for retrieving
information about memory utilization and fragmentation.
The old instrument interface has been removed, as have the related options
+Mim and +Mis.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14961

 Tools 2.11.2.2

 Fixed Bugs and Malfunctions

	cover would fail to start if two processes tried to start it at the exact
same time.
Own Id: OTP-15813 Aux Id: ERL-943

 Tools 2.11.2.1

 Fixed Bugs and Malfunctions

	Minor fixes for make clean.
Own Id: OTP-15657

 Tools 2.11.2

 Fixed Bugs and Malfunctions

	A counting bug is corrected in Cover. The bug was introduced in Erlang/OTP
18.0.
Own Id: OTP-14817 Aux Id: PR 1641

	The lcnt server will no longer crash if lcnt:information/0 is called
before lcnt:collect/0.
Own Id: OTP-14912

	lcnt:collect will now implicitly start the lcnt server, as per the
documentation.
Own Id: OTP-14913

 Improvements and New Features

	Improved indentation in emacs and various other updates.
Own Id: OTP-14944

 Tools 2.11.1

 Fixed Bugs and Malfunctions

	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

 Tools 2.11

 Fixed Bugs and Malfunctions

	The predefined Xref analysis locals_not_used no longer reports unused
functions with the -on_load() attribute.
The new predefined Xref variable OL holds all functions with the
-on_load() attribute.
Own Id: OTP-14344

	In fprof when sampling multiple processes and analyzing with totals set to
true, the output now sums together all caller and callee entries which
concerns the same function. Previous behaviour was to report each contributing
entry separately.
Own Id: OTP-14500

 Improvements and New Features

	Lock counting can now be fully toggled at runtime in the lock counting
emulator (-emu_type lcnt). Everything is enabled by default to match the old
behavior, but specific categories can be toggled at will with minimal runtime
overhead when disabled. Refer to the documentation on lcnt:rt_mask/1 for
details.
Own Id: OTP-13170

	lcnt:collect and lcnt:clear will no longer block all other threads in the
runtime system.
Own Id: OTP-14412

	General Unicode improvements.
Own Id: OTP-14462

	Tools are updated to show Unicode atoms correctly.
Own Id: OTP-14464

	Add erlang:iolist_to_iovec/1, which converts an iolist() to an
erlang:iovec(), which suitable for use with enif_inspect_iovec.
Own Id: OTP-14520

 Tools 2.10.1

 Fixed Bugs and Malfunctions

	In OTP-20.0, the behavior of c, make, and ct_make was changed so that in some
cases the beam files by default would be written to the directory where the
source files were found. This is now changed back to the old behavior so beam
files are by default written to current directory.
Own Id: OTP-14489 Aux Id: ERL-438

 Tools 2.10

 Fixed Bugs and Malfunctions

	In some situations, make:all() and friends did not detect changes in include
files located in the current directory. This is now corrected.
Own Id: OTP-14339 Aux Id: ERL-395

 Improvements and New Features

	The make module now accepts the {emake,Emake} option.
Own Id: OTP-14253

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

 Tools 2.9.1

 Improvements and New Features

	Improved edoc support in emacs mode.
Own Id: OTP-14217 Aux Id: PR-1282

 Tools 2.9

 Fixed Bugs and Malfunctions

	Fix unhandled trace event send_to_non_existing_process in fprof.
Own Id: OTP-13998

 Improvements and New Features

	Improved edoc support in emacs erlang-mode.
Own Id: OTP-13945 Aux Id: PR-1157

	Added erldoc to emacs mode which opens html documentation in browser from
emacs. For example M-x erldoc-browse RET lists:foreach/2.
Own Id: OTP-14018 Aux Id: PR-1197

 Tools 2.8.6

 Fixed Bugs and Malfunctions

	Errors in type specification and Emacs template generation for
gen_statem:code_change/4 has been fixed from bugs.erlang.org's Jira cases
ERL-172 and ERL-187.
Own Id: OTP-13746 Aux Id: ERL-172, ERL-187

	Fix gc_start/gc_end in fprof tags when parsing old trace logs.
Own Id: OTP-13778 Aux Id: PR-1136

	make (tools) and ct_make (common_test) would crash if an Erlang source
file contained a -warning() directive.
Own Id: OTP-13855

 Tools 2.8.5

 Fixed Bugs and Malfunctions

	Correct a bug when adding multiple modules to an Xref server. The bug was
introduced in OTP-19.0.
Own Id: OTP-13708 Aux Id: ERL-173

 Tools 2.8.4

 Fixed Bugs and Malfunctions

	Update fprof to use the new 'spawned' trace event to determine when a process
has been created.
Own Id: OTP-13499

 Improvements and New Features

	Optimize adding multiple modules to an Xref server.
Own Id: OTP-13593

	Various emacs mode improvements, such as better tags support.
Own Id: OTP-13610

 Tools 2.8.3

 Fixed Bugs and Malfunctions

	cover:compile_beam/1 and cover:compile_beam_directory/1,2 crashed when
trying to compile a beam file without a 'file' attribute. This has been
corrected and an error is returned instead.
Thanks to Louis-Philippe Gauthier for reporting this bug.
Own Id: OTP-13200

	Fix a bit string comprehension bug in Cover.
Own Id: OTP-13277 Aux Id: PR 856

 Tools 2.8.2

 Fixed Bugs and Malfunctions

	The emacs mode does not add a newline after the arrow on -callback lines
anymore.
Own Id: OTP-13042

 Tools 2.8.1

 Fixed Bugs and Malfunctions

	If a module includes eunit.hrl, a parse transform adds the function test/0 on
line 0 in the module. A bug in OTP-18.0 caused cover:analyse_to_file/1 to fail
to insert cover data in the output file when line 0 existed in the cover data
table. This is now corrected.
Own Id: OTP-12981

 Tools 2.8

 Fixed Bugs and Malfunctions

	In order to improve performance of the cover tool, new functions are added for
cover compilation and analysis on multiple files. This allows for more
parallelisation.
Some improvements of the data base access is also done in order to improve the
performance when analysing and resetting cover data.
Minor incompatibility: An error reason from analyse_to_file is changed from
no_source_code_found to {no_source_code_found,Module}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12330 Aux Id: seq12757

	Attempting to do a cover analysis when neither source code nor beam file
could be found would hang the cover server. Corrected to return a proper
error.
Own Id: OTP-12806

 Improvements and New Features

	Allow maps for supervisor flags and child specs
Earlier, supervisor flags and child specs were given as tuples. While this is
kept for backwards compatibility, it is now also allowed to give these
parameters as maps, see sup_flags and
child_spec.
Own Id: OTP-11043

	Remove Mnemosyne rules support.
Own Id: OTP-12511

	Add printout of total number of calls and time in eprof
Own Id: OTP-12681

 Tools 2.7.2

 Fixed Bugs and Malfunctions

	Fix lcnt sorting and printout of histograms.
Own Id: OTP-12364

	Fix a Unicode bug in the tags module.
Own Id: OTP-12567

	Fix tags completion in erlang.el for GNU Emacs 23+
Own Id: OTP-12583

 Tools 2.7.1

 Fixed Bugs and Malfunctions

	Fixed a typo in erlang-mode comment.
Own Id: OTP-12214

	Add a skeleton for -spec in Erlang mode for Emacs
Own Id: OTP-12283

 Improvements and New Features

	Cover no longer crashes when compiling receive and the like with just an
after clause. Thanks to José Valim for providing a fix.
Own Id: OTP-12328

 Tools 2.7

 Improvements and New Features

	Add log2 histogram to lcnt for lock wait time
Own Id: OTP-12059

 Tools 2.6.15

 Fixed Bugs and Malfunctions

	Removed erlang:bitstr_to_list/1 and erlang:list_to_bitstr/1. They were
added by mistake, and have always raised an undefined exception when called.
Own Id: OTP-11942

 Tools 2.6.14

 Fixed Bugs and Malfunctions

	Removed the support for the query keyword from emacs mode (Thanks to Paul
Oliver)
Own Id: OTP-11568

	Emacs mode improvements (Thanks to Steve Vinoski)
Own Id: OTP-11601

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

	The emacs erlang mode now match erlang keywords more carefully (Thanks to
Steve Vinoski)
Own Id: OTP-11786

	The emacs erlang-mode now auto loads for more file types (Thanks to Phil
Hagelberg)
Own Id: OTP-11788

 Improvements and New Features

	cover can run on itself. Also, support for reading BEAM files produced by
ancient OTP versions before R9C has been removed.
Own Id: OTP-11692

	Support maps in cover
Own Id: OTP-11764

 Tools 2.6.13

 Fixed Bugs and Malfunctions

	Erlang-specific compilation error regexp is added in erlang-eunit.el. This
defvar was earlier in erlang.el, but was erroneously removed in R15B02, while
still used by erlang-eunit.el.
Own Id: OTP-11417 Aux Id: seq12447

	Take compiler options from beam in cover:compile_beam. Thanks to Péter Gömöri.
Own Id: OTP-11439

	Silence warnings (Thanks to Anthony Ramine)
Own Id: OTP-11517

 Improvements and New Features

	Add iodata, nonempty_string to built-in type highlighting for emacs. Thanks to
Paul Oliver.
Own Id: OTP-11394

 Tools 2.6.12

 Improvements and New Features

	Remove trailing spaces in Emacs templates. Thanks to Roberto Aloi.
Own Id: OTP-11198

	Fixed the Emacs erlang-mode to accommodate the coding style where lists
written across several lines have each line starting with a comma. Thanks to
Magnus Henoch.
Own Id: OTP-11242

	Make the Emacs Erlang mode TRAMP-aware when compiling. Thanks to Tomas
Abrahamsson.
Own Id: OTP-11270

 Tools 2.6.11

 Fixed Bugs and Malfunctions

	When cover:stop(Node) was called on a non-existing node, a process waiting for
cover data from the node would hang forever. This has been corrected.
Own Id: OTP-10979

 Improvements and New Features

	Make cover smarter about finding source from beam.
In particular, search using the source path in module_info if the current
heuristic fails.
Own Id: OTP-10902

	Remove Flymake dependency in erlang-pkg.el. Thanks to Magnus Henoch.
Own Id: OTP-10930

	Erlang-mode: Add autoload cookies for file extension associations. Thanks to
Magnus Henoch.
Own Id: OTP-10999

	Postscript files no longer needed for the generation of PDF files have been
removed.
Own Id: OTP-11016

	Fix a race condition when there're several applications in apps directory.
Thanks to Manuel Rubio.
Own Id: OTP-11028

	New option for eprof, 'set_on_spawn'. This option was previously always on and
is also the default.
Own Id: OTP-11144

 Tools 2.6.10

 Improvements and New Features

	Fix a bug in cover when used with no_auto_import. Thanks to José Valim.
Own Id: OTP-10778

 Tools 2.6.9

 Fixed Bugs and Malfunctions

	Add missing modules in app-file
Own Id: OTP-10439

	Make erlang-mode more compatible with package.el (Thanks to Gleb Peregud)
Own Id: OTP-10465

	Fix various typos (thanks to Tuncer Ayaz)
Own Id: OTP-10611

	Add separate face for exported functions (Thanks to Thomas Järvstrand)
Own Id: OTP-10637

	The BIF highlighting in the emacs mode has been updated to correspond with the
correct BIFs.
Own Id: OTP-10774

 Improvements and New Features

	Support for Unicode has been implemented.
Own Id: OTP-10302

	A new function, cover:flush(Nodes), is added which will fetch data from remote
nodes without stopping cover on those nodes. This is used by test_server and
common_test when it is safe to assume that the node will be terminated after
the test anyway. The purpose is to avoid processes crashing when re-loading
the original beam if the processes is still running old code.
Remote nodes will now continue to count code coverage if the connection to the
main node is broken. Earlier, a broken connection would cause the cover_server
on the remote node to die and thus any still cover compiled modules would
cause process crash when trying to insert cover data in ets tables that used
to exist on the cover_server. The new functionality also involves
synchronization with the main node if the nodes are reconnected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10523 Aux Id: OTP-10427

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Fix syntax highlighting of $\' in Emacs mode. Thanks to Magnus Henoch.
Own Id: OTP-10766

 Tools 2.6.8

 Fixed Bugs and Malfunctions

	The last tuple fun call has been removed from fprof.
Own Id: OTP-10091 Aux Id: seq12067

	Fix indentation of record fields in Emacs (Thanks to Tomas Abrahamsson)
Own Id: OTP-10120

	Documentation fixes (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-10121

	Remove Erlang-specific compilation error regexp in erlang.el
Own Id: OTP-10168

	Fix highlighting of atoms ending with a dollar sign
Like this: 'atom$'. In that example, the last single quote should be
recognised as ending the atom. This needs a font-lock workaround similar to
the one for strings. Thanks to Magnus Henoch
Own Id: OTP-10178

	Xref now accepts filenames with character codes greater than 126. (Thanks to
Emile Joubert for reporting the issue.)
Own Id: OTP-10192

	Add test_indentation target to lib/tools/emacs/Makefile
Automatically indent test.erl.orig, save to test.erl, and compare to
test.erl.intended. Thanks to Magnus Henoch.
Own Id: OTP-10226

 Tools 2.6.7

 Fixed Bugs and Malfunctions

	Makefiles in erts, hipe and tools have been corrected to enable parallel make,
i.e MAKEFLAGS=-jX where X is the parallelity number. As a result of this
dependencies were corrected since that is what is needed for parallel make to
work.
Own Id: OTP-9857 Aux Id: OTP-9451

	Minor suppressions and fixes of compilation warnings
Own Id: OTP-10016

 Tools 2.6.6.6

 Fixed Bugs and Malfunctions

	Update system profiling principles to reflect eprof performance improvements.
Own Id: OTP-9656

	[cover] fix leftover {'DOWN', ..} msg in callers queue
After stopping cover with cover:stop() there could still be a {'DOWN',...}
leftover message in the calling process's message queue. This unexpected
leftover could be eliminated if erlang:demonitor/2 with option flush would be
used in certain points
Own Id: OTP-9694

	Add deps as erlang-flymake include directory.
Update erlang-flymake to recognize the "deps" folder as an include directory.
This makes erlang-flymake compatible with the rebar dependency management
tool's default folder structure, which puts included dependencies in
"deps".(Thanks to Kevin Albrecht)
Own Id: OTP-9791

 Improvements and New Features

	Variables are now now allowed in 'fun M:F/A' as suggested by Richard O'Keefe
in EEP-23.
The representation of 'fun M:F/A' in the abstract format has been changed in
an incompatible way. Tools that directly read or manipulate the abstract
format (such as parse transforms) may need to be updated. The compiler can
handle both the new and the old format (i.e. extracting the abstract format
from a pre-R15 BEAM file and compiling it using compile:forms/1,2 will work).
The syntax_tools application can also handle both formats.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9643

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

	Eliminate use of deprecated regexp module
Own Id: OTP-9810

 Tools 2.6.6.5

 Fixed Bugs and Malfunctions

	Teach the emacs mode to compile yecc and leex files
If visiting a .yrl or .xrl file in emacs with erlang-mode, then the
`erlang-compile' function (normally bound to C-c C-k), now knows how to
compile yecc and leex files, and then, if that compilation succeeds, also
compiles the resulting .erl files.
Also introduce a `erlang-compile-command-function-alist' to make it possible
to hook in other functions for computing compilation commands/expressions,
depending on file name. (Thanks to Tomas Abrahamsson)
Own Id: OTP-9503

 Improvements and New Features

	Bugs in xref(3) have been fixed. (Thanks to Matthias Lang.)
Own Id: OTP-9416

 Tools 2.6.6.4

 Fixed Bugs and Malfunctions

	Change make:files to behave more like erlc
This change removes the unnecessary checks on the files when make:files is
called and allows the error checking to be done in compile:file, where the
error messages are produced. It does not affect the return value.
(Thanks to Sam bobroff)
Own Id: OTP-9179

	add user specified compiler options on form reloading
In order to be able to test non-exported functions from another (test) module
it is necessary to compile the specific module (at least during the test
phase) with the exportall compiler option. This allows complete separation of
testing and productive code. At the moment it is not possible to combine this
with a test code coverage using the cover module. The problem is that when
cover compiling a module using cover:compile* the code is reloaded into the
emulator omitting/filtering the passed user options. In my example above the
export_all option would be removed and the non-exported functions cannot be
called any more. (Thanks to Tobias Schlager)
Own Id: OTP-9204

	Inhibit electric newline after "->" when inside a type spec
The Erlang mode for Emacs inserts a newline after every "->", which saves you
one keystroke when writing a function, but that is inappropriate when writing
a type spec, as you'd normally keep the spec on one line. This change inhibits
the automatic insertion when the current line starts with "-spec" or
"-type".(Thanks to Magnus Henoch)
Own Id: OTP-9255

	Add a check logic to prevent file descriptor leak
cover module handle files as raw in export and import. Assert counts of ports
are the same at the beginning and at the end of the test case.(Thanks to
Shunichi Shinohara)
Own Id: OTP-9300

 Tools 2.6.6.3

 Fixed Bugs and Malfunctions

	Declare indentation options as "safe" in erlang-mode for Emacs
Emacs has a facility for setting options on a per-file basis based on comments
in the source file. By default, all options are considered "unsafe", and the
user is queried before the variable is set. This patch declares the variables
erlang-indent-level, erlang-indent-guard and erlang-argument-indent to be
safe, if the value specified in the source file is valid.
Such declarations usually look like this:
%% -- erlang-indent-level: 2 --
and appear on the first line of the file. (thanks to Magnus Henoch)
Own Id: OTP-9122

 Improvements and New Features

	Cover has been improved to take less memory and allow parallel analysis of
cover data. Data collection from nodes is now done in parallel and it is now
possible to issue multiple analyse and analyse_to_file requests at the same
time. A new function call async_analyse_to_file has also been introduced, see
the documentation for more details.
Own Id: OTP-9043 Aux Id: seq11771

 Tools 2.6.6.2

 Fixed Bugs and Malfunctions

	eprof: API sort mismatch has now been fixed.
Own Id: OTP-8853

	eprof: fix division by zero in statistics
Own Id: OTP-8963

 Tools 2.6.6.1

 Fixed Bugs and Malfunctions

	cover will now show ampersand characters in the source code correctly.
(Thanks to Tom Moertel.)
Own Id: OTP-8776

 Tools 2.6.6

 Fixed Bugs and Malfunctions

	A race condition affecting Cover has been removed.
Own Id: OTP-8469

	Emacs improvements:
Fixed emacs-mode installation problems.
Fixed a couple of -spec and -type indentation and font-lock problems.
Fixed error messages on emacs-21.
Magnus Henoch fixed several issues.
Ralf Doering, Klas Johansson and Chris Bernard contributed various emacs-eunit
improvements.
Klas Johansson and Dave Peticolas added emacs-flymake support.
Own Id: OTP-8530

 Improvements and New Features

	Xref has been updated to use the re module instead of the deprecated
regexp module.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8472

	When given the option {builtins,true} Xref now adds calls to operators.
Own Id: OTP-8647

	eprof has been reimplemented with support in the Erlang virtual machine and
is now both faster (i.e. slows down the code being measured less) and scales
much better. In measurements we saw speed-ups compared to the old eprof
ranging from 6 times (for sequential code that only uses one scheduler/core)
up to 84 times (for parallel code that uses 8 cores).
Note: The API for the eprof has been cleaned up and extended. See the
documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8706

 Tools 2.6.5.1

 Fixed Bugs and Malfunctions

	A bug concerning bit comprehensions has been fixed in Cover. The bug was
introduced in R13B03. (Thanks to Matthew Sackman.)
Own Id: OTP-8340

 Improvements and New Features

	Add lock profiling tool.
The Lock profiling tool, lcnt, can make use of the internal lock statistics
when the runtime system is built with this feature enabled.
This provides a mechanism to examine potential lock bottlenecks within the
runtime itself.
- Add erts_debug:lock_counters({copy_save, bool()}). This option enables or
disables statistics saving for destroyed processes and ets-tables. Enabling
this might consume a lot of memory.
- Add id-numbering for lock classes which is otherwise undefined.
Own Id: OTP-8424

	emacs: Moved code skeletons to a separate file and and added a configurable
variable to choose skeleton. Thanks Dave Peticolas.
Own Id: OTP-8446

 Tools 2.6.5

 Fixed Bugs and Malfunctions

	The coverage analysis tool cover has been improved when it comes to handling
list and bit string comprehensions (a counter for each qualifier), bit syntax
expressions (the Value and Size expressions), and try expressions (the body
called Exprs in the Reference Manual). A few (not all) situations where
several expressions are put on the same line are also handled better than
before.
Own Id: OTP-8188 Aux Id: seq11397

	When loading Cover compiled code on remote nodes running code in the loaded
module, a badarg failure was sometimes the result. This bug has been fixed.
Own Id: OTP-8270 Aux Id: seq11423

	The short-circuit operators andalso and orelse are now handled correctly
by the coverage analysis tool cover (it is no longer checked that the second
argument returns a Boolean value.)
Own Id: OTP-8273

 Tools 2.6.4

 Fixed Bugs and Malfunctions

	cover now properly escapes greater-than and less-than characters in comments
in HTML reports. (Thanks to Magnus Henoch.)
Own Id: OTP-7939

 Tools 2.6.3

 Improvements and New Features

	xref:start/1 does now allow anonymous XREF processes to be started
Own Id: OTP-7831

 Tools 2.6.2

 Fixed Bugs and Malfunctions

	A bug in the Xref scanner has been fixed.
Own Id: OTP-7423

	A bug in Fprof where the function 'undefined' appeared to call 'undefined' has
been corrected.
Own Id: OTP-7509

 Tools 2.6.1

 Improvements and New Features

	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

	The coverage analysis tool cover now handles the short-circuit Boolean
expressions andalso/2 and orelse/2 properly.
Own Id: OTP-7095

 Tools 2.6

 Fixed Bugs and Malfunctions

	The cover tool could use huge amounts of memory when used in a distributed
system.
Own Id: OTP-6758

 Tools 2.5.5

 Fixed Bugs and Malfunctions

	Missing buffer-local declaration in erlang.el has been added. Before this fix
there could arise problems in other emacs modes after visiting a buffer using
the erlang mode.
Own Id: OTP-6721

	Key-map for 'backward-delete-char-untabif updated to work properly with
Xemacs.
Own Id: OTP-6723

 Improvements and New Features

	Minor updates of Xref.
Own Id: OTP-6586

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

	"C-u C-c C-k" now does a compile with both "debug_info" and "export_all".
Own Id: OTP-6741

 Tools 2.5.4.1

 Improvements and New Features

	Changes due to internal interface changes in the erts application which are
needed at compile-time. No functionality has been changed.
Own Id: OTP-6611 Aux Id: OTP-6580

 Tools 2.5.4

 Fixed Bugs and Malfunctions

	Made change to support the function erlang-find-tag for xemacs and emacs-21.
Own Id: OTP-6512

 Improvements and New Features

	Minor updates of xref for future compatibility.
Own Id: OTP-6513

 Tools 2.5.3

 Fixed Bugs and Malfunctions

	eprof did not work reliably in the SMP emulator, because the trace receiver
process could not process the trace messages fast enough. Therefore, eprof
now blocks the other schedulers while profiling.
Own Id: OTP-6373

 Tools 2.5.2

 Fixed Bugs and Malfunctions

	Fprof traces could become truncated for the SMP emulator. This bug has now
been corrected.
Own Id: OTP-6246

 Tools 2.5.1

 Fixed Bugs and Malfunctions

	eprof now works somewhat better in the SMP emulator.
Own Id: OTP-6152

 Tools 2.5

 Fixed Bugs and Malfunctions

	Fixed some bugs in make:
make:files/1,2 can now handle a file in another directory as argument,
similar to make:all/0,1.
When specifying a file name including the .erl extension in Emakefile,
make:all/0,1 looked for the object code in the wrong place.
When specifying a file name including the .erl extension in Emakefile and
some compile options for the file, make:files/0,1 did not use the options as
it should do.
Own Id: OTP-6057 Aux Id: seq10299

	cover: When cover:stop() was called, the cover compiled code was not
unloaded (as stated in the documentation) but simply marked as 'old'. This
meant that processes lingering in (or with funs referencing to) the cover
compiled code would survive even when the cover server and its ETS tables was
terminated.
Now the cover compiled code is unloaded, meaning that processes lingering
in/with references to it will be killed when cover:stop is called, instead
of later crashing with badarg when trying to bump counters in ETS tables no
longer existing.

 Improvements and New Features

	Replaced call to deprecated function file:file_info/1 with call to
filelib:is_dir/1 and filelib:is_regular/1 in tags.erl.
Own Id: OTP-6079

 Tools 2.4.7

 Fixed Bugs and Malfunctions

	A bug in fprof profiling causing erroneous inconsistent trace failure has
been corrected.
Own Id: OTP-5922 Aux Id: seq10203

 Tools 2.4.6

 Fixed Bugs and Malfunctions

	Emacs: erlang-man-function and erlang-man-module used a pattern matching
to find the requested module that sometimes yielded unexpected results. For
example, erlang-man-module file would display the man page for
CosFileTransfer_File.
Own Id: OTP-5746 Aux Id: seq10096

	Some compiler warnings and Dialyzer warnings were eliminated in the Tools
application.
When tracing to a port (which fprof does), there could be fake schedule
out/schedule in messages sent for a process that had exited.
Own Id: OTP-5757

 Tools 2.4.5

 Fixed Bugs and Malfunctions

	The cross reference tool xref did not handle the new fun M:F/A construct
properly. This problem has been fixed.
Own Id: OTP-5653

 Tools 2.4.4

 Fixed Bugs and Malfunctions

	The cover tool did not escape '<' and '>' not being part of HTML tags in
HTML log files.
Own Id: OTP-5588

 Tools 2.4.3

 Improvements and New Features

	It is now possible to encrypt the debug information in beam files, to help
keep the source code secret. See compile for how to provide the key for
encrypting, and beam_lib for how to provide the key for decryption so that
tools such as Debugger, xref, or cover can be used.
The beam_lib:chunks/2 functions now accepts an additional chunk type
'compile_info' to retrieve the compilation information directly as a term.
(Thanks to Tobias Lindahl.)
Own Id: OTP-5460 Aux Id: seq9787

 Tools 2.4.2

 Fixed Bugs and Malfunctions

	The cover tool could not analyze empty modules on module level.
Own Id: OTP-5418

 Tools 2.4.1

 Fixed Bugs and Malfunctions

	The xref analysis locals_not_used could return too many functions. This
problem has been fixed.
Own Id: OTP-5071

	The cover tool could not always compile parse transformed modules. This
problem has been fixed.
Own Id: OTP-5305

 cover - The Coverage Analysis Tool - tools v4.1.1

cover - The Coverage Analysis Tool

 Introduction

The module cover provides a set of functions for coverage analysis of Erlang
programs, counting how many times each executable line
is executed.
Coverage analysis can be used to verify test cases, making sure all relevant
code is covered, and can be helpful when looking for bottlenecks in the code.

 Getting Started With Cover

 Example

Assume that a test case for the following program should be verified:
-module(channel).
-behaviour(gen_server).

-export([start_link/0,stop/0]).
-export([alloc/0,free/1]). % client interface
-export([init/1,handle_call/3,terminate/2]). % callback functions

start_link() ->
 gen_server:start_link({local,channel}, channel, [], []).

stop() ->
 gen_server:call(channel, stop).

%%%-Client interface functions---

alloc() ->
 gen_server:call(channel, alloc).

free(Channel) ->
 gen_server:call(channel, {free,Channel}).

%%%-gen_server callback functions--

init(_Arg) ->
 {ok,channels()}.

handle_call(stop, _Client, Channels) ->
 {stop,normal,ok,Channels};

handle_call(alloc, _Client, Channels) ->
 {Ch,Channels2} = alloc(Channels),
 {reply,{ok,Ch},Channels2};

handle_call({free,Channel}, _Client, Channels) ->
 Channels2 = free(Channel, Channels),
 {reply,ok,Channels2}.

terminate(_Reason, _Channels) ->
 ok.

%%%-Internal functions---

channels() ->
 [ch1,ch2,ch3].

alloc([Channel|Channels]) ->
 {Channel,Channels};
alloc([]) ->
 false.

free(Channel, Channels) ->
 [Channel|Channels].
The test case is implemented as follows:
-module(test).
-export([s/0]).

s() ->
 {ok,Pid} = channel:start_link(),
 {ok,Ch1} = channel:alloc(),
 ok = channel:free(Ch1),
 ok = channel:stop().

 Preparation

First of all, Cover must be started. This spawns a process which owns the Cover
database where all coverage data will be stored.
1> cover:start().
{ok,<0.90.0>}
To include other nodes in the coverage analysis, use
cover:start/1. All cover-compiled modules will then be loaded on all
nodes, and data from all nodes will be summed up when analysing. For
simplicity this example only involves the current node.
Before any analysis can take place, the involved modules must be
cover-compiled. This means that some extra information is added to
the module before beging compiled into a binary and
loaded. The source file of the module is
not affected and no .beam file is created.
2> cover:compile_module(channel).
{ok,channel}
Each time a function in the cover-compiled module channel is called,
information about the call will be added to the Cover database. Run the test
case:
3> test:s().
ok
Cover analysis is performed by examining the contents of the Cover database. The
output is determined by two parameters, Level and Analysis. Analysis is
either coverage or calls and determines the type of the analysis. Level is
either module, function, clause, or line and determines the level of the
analysis.

 Coverage Analysis

Analysis of type coverage is used to find out how much of the code has been
executed and how much has not been executed. Coverage is represented by a tuple
{Cov,NotCov}, where Cov is the number of executable lines that have been
executed at least once and NotCov is the number of executable lines that have
not been executed.
If the analysis is made on module level, the result is given for the entire
module as a tuple {Module,{Cov,NotCov}}:
4> cover:analyse(channel, coverage, module).
{ok,{channel,{14,1}}}
For channel, the result shows that 14 lines in the module are covered but one
line is not covered.
If the analysis is made on function level, the result is given as a list of
tuples {Function,{Cov,NotCov}}, one for each function in the module. A
function is specified by its module name, function name and arity:
5> cover:analyse(channel, coverage, function).
{ok,[{{channel,start_link,0},{1,0}},
 {{channel,stop,0},{1,0}},
 {{channel,alloc,0},{1,0}},
 {{channel,free,1},{1,0}},
 {{channel,init,1},{1,0}},
 {{channel,handle_call,3},{5,0}},
 {{channel,terminate,2},{1,0}},
 {{channel,channels,0},{1,0}},
 {{channel,alloc,1},{1,1}},
 {{channel,free,2},{1,0}}]}
For channel, the result shows that the uncovered line is in the function
channel:alloc/1.
If the analysis is made on clause level, the result is given as a list of tuples
{Clause,{Cov,NotCov}}, one for each function clause in the module. A clause is
specified by its module name, function name, arity and position within the
function definition:
6> cover:analyse(channel, coverage, clause).
{ok,[{{channel,start_link,0,1},{1,0}},
 {{channel,stop,0,1},{1,0}},
 {{channel,alloc,0,1},{1,0}},
 {{channel,free,1,1},{1,0}},
 {{channel,init,1,1},{1,0}},
 {{channel,handle_call,3,1},{1,0}},
 {{channel,handle_call,3,2},{2,0}},
 {{channel,handle_call,3,3},{2,0}},
 {{channel,terminate,2,1},{1,0}},
 {{channel,channels,0,1},{1,0}},
 {{channel,alloc,1,1},{1,0}},
 {{channel,alloc,1,2},{0,1}},
 {{channel,free,2,1},{1,0}}]}
For channel, the result shows that the uncovered line is in the second clause
of channel:alloc/1.
Finally, if the analysis is made on line level, the result is given as a list of
tuples {Line,{Cov,NotCov}}, one for each executable line in the source code. A
line is specified by its module name and line number.
7> cover:analyse(channel, coverage, line).
{ok,[{{channel,9},{1,0}},
 {{channel,12},{1,0}},
 {{channel,17},{1,0}},
 {{channel,20},{1,0}},
 {{channel,25},{1,0}},
 {{channel,28},{1,0}},
 {{channel,31},{1,0}},
 {{channel,32},{1,0}},
 {{channel,35},{1,0}},
 {{channel,36},{1,0}},
 {{channel,39},{1,0}},
 {{channel,44},{1,0}},
 {{channel,47},{1,0}},
 {{channel,49},{0,1}},
 {{channel,52},{1,0}}]}
For channel, the result shows that the uncovered line is line number 49.

 Call Statistics

Analysis of type calls is used to find out how many times something has been
called and is represented by an integer Calls.
If the analysis is made on module level, the result is given as a tuple
{Module,Calls}. Here Calls is the total number of calls to functions in the
module:
8> cover:analyse(channel, calls, module).
{ok,{channel,12}}
For channel, the result shows that a total of twelve calls have been made to
functions in the module.
If the analysis is made on function level, the result is given as a list of
tuples {Function,Calls}. Here Calls is the number of calls to each function:
9> cover:analyse(channel, calls, function).
{ok,[{{channel,start_link,0},1},
 {{channel,stop,0},1},
 {{channel,alloc,0},1},
 {{channel,free,1},1},
 {{channel,init,1},1},
 {{channel,handle_call,3},3},
 {{channel,terminate,2},1},
 {{channel,channels,0},1},
 {{channel,alloc,1},1},
 {{channel,free,2},1}]}
For channel, the result shows that handle_call/3 is the most called function
in the module (three calls). All other functions have been called once.
If the analysis is made on clause level, the result is given as a list of tuples
{Clause,Calls}. Here Calls is the number of calls to each function clause:
10> cover:analyse(channel, calls, clause).
{ok,[{{channel,start_link,0,1},1},
 {{channel,stop,0,1},1},
 {{channel,alloc,0,1},1},
 {{channel,free,1,1},1},
 {{channel,init,1,1},1},
 {{channel,handle_call,3,1},1},
 {{channel,handle_call,3,2},1},
 {{channel,handle_call,3,3},1},
 {{channel,terminate,2,1},1},
 {{channel,channels,0,1},1},
 {{channel,alloc,1,1},1},
 {{channel,alloc,1,2},0},
 {{channel,free,2,1},1}]}
For channel, the result shows that all clauses have been called once, except
the second clause of channel:alloc/1 which has not been called at all.
Finally, if the analysis is made on line level, the result is given as a list of
tuples {Line,Calls}. Here Calls is the number of times each line has been
executed:
11> cover:analyse(channel, calls, line).
{ok,[{{channel,9},1},
 {{channel,12},1},
 {{channel,17},1},
 {{channel,20},1},
 {{channel,25},1},
 {{channel,28},1},
 {{channel,31},1},
 {{channel,32},1},
 {{channel,35},1},
 {{channel,36},1},
 {{channel,39},1},
 {{channel,44},1},
 {{channel,47},1},
 {{channel,49},0},
 {{channel,52},1}]}
For channel, the result shows that all lines have been executed once, except
line number 49 which has not been executed at all.

 Analysis to File

A line level calls analysis of channel can be written to a file using
cover:analyse_to_file/1:
12> cover:analyse_to_file(channel).
{ok,"channel.COVER.out"}
The function creates a copy of channel.erl where it for each executable line
is specified how many times that line has been executed. The output file is
called channel.COVER.out.
File generated from /Users/bjorng/git/otp/channel.erl by COVER 2024-03-20 at 13:25:04

**

 | -module(channel).
 | -behaviour(gen_server).
 |
 | -export([start_link/0,stop/0]).
 | -export([alloc/0,free/1]). % client interface
 | -export([init/1,handle_call/3,terminate/2]). % callback functions
 |
 | start_link() ->
 1..| gen_server:start_link({local,channel}, channel, [], []).
 |
 | stop() ->
 1..| gen_server:call(channel, stop).
 |
 | %%%-Client interface functions---
 |
 | alloc() ->
 1..| gen_server:call(channel, alloc).
 |
 | free(Channel) ->
 1..| gen_server:call(channel, {free,Channel}).
 |
 | %%%-gen_server callback functions--
 |
 | init(_Arg) ->
 1..| {ok,channels()}.
 |
 | handle_call(stop, _Client, Channels) ->
 1..| {stop,normal,ok,Channels};
 |
 | handle_call(alloc, _Client, Channels) ->
 1..| {Ch,Channels2} = alloc(Channels),
 1..| {reply,{ok,Ch},Channels2};
 |
 | handle_call({free,Channel}, _Client, Channels) ->
 1..| Channels2 = free(Channel, Channels),
 1..| {reply,ok,Channels2}.
 |
 | terminate(_Reason, _Channels) ->
 1..| ok.
 |
 | %%%-Internal functions---
 |
 | channels() ->
 1..| [ch1,ch2,ch3].
 |
 | alloc([Channel|Channels]) ->
 1..| {Channel,Channels};
 | alloc([]) ->
 0..| false.
 |
 | free(Channel, Channels) ->
 1..| [Channel|Channels].

 Conclusion

By looking at the results from the analyses, it can be deduced that
the test case does not cover the case when all channels are allocated
and test.erl should be extended accordingly. Incidentally, when the
test case is corrected a bug in channel will be discovered.
When the Cover analysis is ready, Cover is stopped and all cover-compiled
modules are unloaded. The code for channel is now
loaded as usual from a .beam file in the current path.
13> code:which(channel).
cover_compiled
14> cover:stop().
ok
15> code:which(channel).
"./channel.beam"

 Miscellaneous

 Performance

Execution of code in cover-compiled modules is slower and more memory consuming
than for regularly compiled modules. As the Cover database contains information
about each executable line in each cover-compiled module, performance decreases
proportionally to the size and number of the cover-compiled modules.
To improve performance when analysing cover results it is possible to do
multiple calls to analyse and
analyse_to_file at once. You can also use the
async_analyse_to_file convenience function.

 Executable Lines

Cover uses the concept of executable lines, which is code lines containing
an executable expression such as a matching or a function call. A blank line or
a line containing a comment, function head or pattern in a case or receive
statement is not executable.
In the example below, lines number 2, 4, 6, 8, and 11 are executable lines:
1: is_loaded(Module, Compiled) ->
2: case get_file(Module, Compiled) of
3: {ok,File} ->
4: case code:which(Module) of
5: ?TAG ->
6: {loaded,File};
7: _ ->
8: unloaded
9: end;
10: false ->
11: false
12: end.

 Code Loading Mechanism

When a module is cover-compiled, it is also loaded using the normal code loading
mechanism of Erlang. This means that if a cover-compiled module is re-loaded
during a Cover session, for example using c(Module), it will no longer be
cover-compiled.
Use cover:is_compiled/1 or code:which/1 to see whether or not a
module is cover-compiled (and still loaded).
When Cover is stopped, all cover-compiled modules are unloaded.

 cprof - The Call Count Profiler - tools v4.1.1

cprof - The Call Count Profiler

cprof is a profiling tool that can be used to get a picture of how often
different functions in the system are called.
cprof uses breakpoints similar to local call trace, but containing counters,
to collect profiling data. Therefore there is no need for special compilation of
any module to be profiled.
cprof presents all profiled modules in descending total call count order, and
for each module presents all profiled functions also in descending call count
order. A call count limit can be specified to filter out all functions below the
limit.
Profiling is done in the following steps:
	cprof:start/* - Starts profiling with
zeroed call counters for specified functions by setting call count
breakpoints on them.

	Mod:Fun() - Runs the code to be profiled.

	cprof:pause/* - Pauses the call counters for
specified functions. This minimizes the impact of code running in
the background or in the shell. Call counters are automatically
paused when they "hit the ceiling" of the host machine word
size. For a 32 bit host the maximum counter value is 2,147,483,647.

	cprof:analyse/* - Collects call counters
and computes the result.

	cprof:restart/* - Restarts the call
counters from zero for specified functions. Can be used to collect a
new set of counters without having to stop and start call count
profiling.

	cprof:stop/0..3 - Stops profiling by
removing call count breakpoints from specified functions.

Functions can be specified as either all in the system, all in one module, all
arities of one function, one function, or all functions in all modules not yet
loaded. BIFs cannot be call-count traced.
The analysis result can either be for a single module or for all modules. In either
case a call count limit can be given to filter out the functions with a call
count below the limit. The all modules analysis does not contain the module
cprof itself; the only way to analyze cprof is by specifying it as a single
module to analyse.
Call count tracing is very lightweight compared to other forms of tracing since
no trace message has to be generated. Some measurements indicates performance
degradations in the vicinity of 10 percent.
The following sections show some examples of profiling with cprof.

 Example: Background work

From the Erlang shell:
1> cprof:start(), cprof:pause(). % Stop counters just after start
8492
2> cprof:analyse().
{539,
 [{shell,155,
 [{{shell,prep_check,1},55},
 {{shell,used_records,4},45},
 {{shell,used_records,1},45},
 {{shell,used_record_defs,2},1},
 {{shell,record_defs,2},1},
 {{shell,record_bindings,2},1},
 {{shell,exprs,7},1},
 {{shell,expr,4},1},
 {{shell,expand_records,2},1},
 {{shell,check_command,2},1},
 {{shell,apply_fun,3},1},
 {{shell,'-exprs/7-lc$^0/1-0-',1},1},
 {{shell,'-eval_loop/3-fun-0-',3},1}]},
 %% Information about many modules omitted.
 .
 .
 .
 %% Here is the last part.
 {erts_internal,2,[{{erts_internal,trace_pattern,3},2}]},
 {otp_internal,1,[{{otp_internal,obsolete,3},1}]},
 {maps,1,[{{maps,from_list,1},1}]},
 {erl_internal,1,[{{erl_internal,bif,3},1}]}]}
3> cprof:analyse(cprof).
{cprof,3,[{{cprof,tr,2},2},{{cprof,pause,0},1}]}
4> cprof:stop().
8586
The example showed some of the background work that the shell performs just to
interpret the first command line.
What is captured in this example is the part of the work the shell does while
interpreting the command line that occurs between the actual calls to
cprof:start() and cprof:analyse().

 Example: One module

From the Erlang shell:
1> cprof:start(),R=calendar:day_of_the_week(1896,4,27),cprof:pause(),R.
1
2> cprof:analyse(calendar).
{calendar,9,
 [{{calendar,last_day_of_the_month1,2},1},
 {{calendar,last_day_of_the_month,2},1},
 {{calendar,is_leap_year1,1},1},
 {{calendar,is_leap_year,1},1},
 {{calendar,dy,1},1},
 {{calendar,dm,1},1},
 {{calendar,df,2},1},
 {{calendar,day_of_the_week,3},1},
 {{calendar,date_to_gregorian_days,3},1}]}
3> cprof:stop().
8648
The example tells us that "Aktiebolaget LM Ericsson & Co" was registered on a
Monday (since the return value of the first command is 1), and that the
calendar module needed 9 function calls to calculate that.
Using cprof:analyse() in this example also shows approximately the same
background work as in the first example.

 Example: In the code

Write a module:
-module(sort).
-export([do/1]).

do(N) ->
 cprof:stop(),
 cprof:start(),
 do(N, []).

do(0, L) ->
 R = lists:sort(L),
 cprof:pause(),
 R;
do(N, L) ->
 do(N-1, [rand:uniform(256)-1 | L]).
From the Erlang shell:
1> c(sort).
{ok,sort}
2> rand:seed(default, 42), ok.
ok.
3> sort:do(1000).
[0,0,0,1,1,1,1,2,2,3,3,4,4,4,4,5,5,5,6,6,6,6,7,7,7,7,7,8,8|...]
4> cprof:analyse().
{13180,
 [{lists,6173,
 [{{lists,rmerge3_1,6},1045},
 {{lists,rmerge3_2,6},977},
 {{lists,split_1,5},652},
 {{lists,merge3_1,6},579},
 {{lists,merge3_2,6},577},
 {{lists,rmerge3_12_3,6},511},
 {{lists,split_1_1,6},347},
 {{lists,merge3_12_3,6},310},
 {{lists,rmerge3_21_3,6},282},
 {{lists,merge3_21_3,6},221},
 {{lists,merge2_1,4},154},
 {{lists,merge2_2,5},138},
 {{lists,reverse,2},106},
 {{lists,rmerge2_2,5},87},
 {{lists,rmergel,2},81},
 {{lists,rmerge2_1,4},75},
 {{lists,mergel,2},28},
 {{lists,keyfind,3},2},
 {{lists,sort,1},1}]},
 {rand,5000,
 [{{rand,uniform_s,2},1000},
 {{rand,uniform,1},1000},
 {{rand,seed_put,1},1000},
 {{rand,seed_get,0},1000},
 {{rand,exsss_uniform,2},1000}]},
 {erlang,1004,
 [{{erlang,put,2},1000},
 {{erlang,trace_pattern,3},2},
 {{erlang,ensure_tracer_module_loaded,2},2}]},
 {sort,1001,[{{sort,do,2},1001}]},
 {erts_internal,2,[{{erts_internal,trace_pattern,3},2}]}]}
5> cprof:stop().
12625
The example shows some details of how lists:sort/1 works. It used 6173
function calls in module lists to complete the work.
This time, since the shell was not involved in starting and stopping cprof, no
other work was done in the system during the profiling.

 The Erlang mode for Emacs - tools v4.1.1

The Erlang mode for Emacs

 Purpose

The purpose of this user guide is to introduce you to the Erlang mode
for Emacs and gives some relevant background information of the
functions and features. See also Erlang mode reference
manual The purpose of the Erlang mode
itself is to facilitate the developing process for the Erlang
programmer.

 Pre-requisites

Basic knowledge of Emacs and Erlang/OTP.

 Elisp

Two Elisp modules are included in this tool package for
Emacs. erlang.el defines the actual Erlang mode and
erlang-start.el makes some nice initializations.

 Setup on UNIX

To set up the Erlang Emacs mode on a UNIX systems, edit or create the file .emacs
in the your home directory.
Below is a complete example of what should be added to a user's .emacs
provided that OTP is installed in the directory /usr/local/otp:
(setq load-path (cons "/usr/local/otp/lib/tools-<ToolsVer>/emacs"
load-path))
(setq erlang-root-dir "/usr/local/otp")
(setq exec-path (cons "/usr/local/otp/bin" exec-path))
(require 'erlang-start)

 Setup on Windows

To set up the Erlang Emacs mode on a Windows systems, edit/create the file
.emacs, the location of the file depends on the configuration of the system.
If the HOME environment variable is set, Emacs will look for the .emacs file
in the directory indicated by the HOME variable. If HOME is not set, Emacs
will look for the .emacs file in C:\.
Below is a complete example of what should be added to a user's .emacs
provided that OTP is installed in the directory C:\Program Files\Erlang OTP:
(setq load-path (cons "C:/Program Files/Erlang OTP/lib/tools-<ToolsVer>/emacs"
load-path))
(setq erlang-root-dir "C:/Program Files/Erlang OTP")
(setq exec-path (cons "C:/Program Files/Erlang OTP/bin" exec-path))
(require 'erlang-start)
Note
In .emacs, the slash character (/) can be used as path separator. But if you
decide to use the backslash character (\), note that backslashes have to be
doubled, since they are treated as escape characters by Emacs.

 Indentation

The "Oxford Advanced Learners Dictionary of Current English" says the following
about the word "indent":
"start (a line of print or writing) farther from the margin than the others".

The Erlang mode does, of course, provide this feature. The layout used is based
on the common use of the language.
It is strongly recommended to use this feature and avoid to indent lines in a
nonstandard way. Some motivations are:
	Code using the same layout is easy to read and maintain.
	Since several features of Erlang mode is based on the standard layout they
might not work correctly if a nonstandard layout is used.

The indentation features can be used to reindent large sections of a file. If
some lines use nonstandard indentation they will be reindented.

 Editing

	M-x erlang-mode RET - This command activates the Erlang major mode for
the current buffer. When this mode is active the mode line contain the word
"Erlang".

When the Erlang mode is correctly installed, it is automatically activated when
a file ending in .erl or .hrl is opened in Emacs.
When a file is saved the name in the -module(). line is checked against the
file name. Should they mismatch Emacs can change the module specifier so that it
matches the file name. By default, the user is asked before the change is
performed.
An "electric" command is a character that in addition to just inserting the
character performs some type of action. For example the ; character is typed
in a situation where is ends a function clause a new function header is
generated. The electric commands are as follows:
	erlang-electric-comma - Insert a comma character and possibly a new
indented line.
	erlang-electric-semicolon - Insert a semicolon character and possibly a
prototype for the next line.
	erlang-electric-gt - Insert a > character and possible a new indented line.

To disable all electric commands set the variable erlang-electric-commands to
the empty list. In short, place the following line in your .emacs-file:
(setq erlang-electric-commands '())

 Syntax highlighting

It is possible for Emacs to use colors when displaying a buffer. By "syntax
highlighting", we mean that syntactic components, for example keywords and
function names, will be colored.
The basic idea of syntax highlighting is to make the structure of a program
clearer. For example, the highlighting will make it easier to spot simple bugs.
Have not you ever written a variable in lower-case only? With syntax
highlighting a variable will colored while atoms will be shown with the normal
text color.

 Tags

Tags is a standard Emacs package used to record information about source files
in large development projects. In addition to listing the files of a project, a
tags file normally contains information about all functions and variables that
are defined. By far, the most useful command of the tags system is its ability
to find the definition of functions in any file in the project. But the Tags
system is not limited to this feature, for example, it is possible to do a text
search in all files in a project, or to perform a project-wide search and
replace.
In order to use the Tags system a file named TAGS must be created. The file
can be seen as a database over all functions, records, and macros in all files
in the project. The TAGS file can be created using two different methods for
Erlang. The first is the standard Emacs utility "etags", the second is by using
the Erlang module tags.

 Etags

etags is a program that is part of the Emacs distribution. It is normally
executed from a command line, like a Unix shell or a DOS box.
The etags program of fairly modern versions of Emacs and XEmacs has native
support for Erlang. To check if your version does include this support, issue
the command etags --help at a the command line prompt. At the end of the help
text there is a list of supported languages. Unless Erlang is a member of this
list I suggest that you should upgrade to a newer version of Emacs.
As seen in the help text — unless you have not upgraded your Emacs yet — etags
associate the file extensions .erl and .hrl with Erlang.
Basically, the etags utility is run using the following form:
etags file1.erl file2.erl

This will create a file named TAGS in the current directory.
The etags utility can also read a list of files from its standard input by
supplying a single dash in place of the file names. This feature is useful when
a project consists of a large number of files. The standard UNIX command find
can be used to generate the list of files, for example:
find . -name "*.[he]rl" -print | etags -

The above line will create a TAGS file covering all the Erlang source files in
the current directory, and in the subdirectories below.
See the GNU Emacs Manual and the etags man page for more info.

 Shell

The look and feel on an Erlang shell inside Emacs should be the same as in a
normal Erlang shell. There is just one major difference, the cursor keys will
actually move the cursor around just like in any normal Emacs buffer. The
command line history can be accessed by the following commands:
	C-upor M-p(comint-previous-input) - Move to the previous line in
the input history.
	C-downor M-n(comint-next-input) - Move to the next line in the
input history.

If the Erlang shell buffer would be killed the command line history is saved to
a file. The command line history is automatically retrieved when a new Erlang
shell is started.

 Compilation

The classic edit-compile-bugfix cycle for Erlang is to edit the source file in
an editor, save it to a file and switch to an Erlang shell. In the shell the
compilation command is given. Should the compilation fail you have to bring out
the editor and locate the correct line.
With the Erlang editing mode the entire edit-compile-bugfix cycle can be
performed without leaving Emacs. Emacs can order Erlang to compile a file and it
can parse the error messages to automatically place the point on the erroneous
lines.

 fprof - The File Trace Profiler - tools v4.1.1

fprof - The File Trace Profiler

fprof is a profiling tool that can be used to get a picture of how much
processing time different functions consumes and in which processes.
fprof uses tracing with timestamps to collect profiling data. Therefore there
is no need for special compilation of any module to be profiled.
fprof presents wall clock times from the host machine OS, with the assumption
that OS scheduling will randomly load the profiled functions in a fair way. Both
own time, that is, the time used by a function for its own execution, and
accumulated time, that is, execution time including called functions.
Profiling is essentially done in 3 steps:
	Tracing to a file.

	Profiling: the trace file is read and raw profile data is collected
into an internal RAM storage on the node. During this step the trace data may
be dumped in text format to file or console.

	Analysing: the raw profile data is sorted and dumped in text format
either to file or console.

Since fprof stores trace data to a file, the runtime performance degradation is
minimized, but still far from negligible, especially for programs that themselves
use the filesystem heavily. Where the trace file is placed is also important;
on Unix systems /tmp is usually a good choice, while any
network-mounted disk is a bad choice.
fprof can also skip the file step and trace to a tracer process of its own that
does the profiling in runtime.
The following sections show some examples of how to profile with fprof.

 Profiling from the source code

If you can edit and recompile the source code, it is convenient to
insert fprof:trace(start) and
fprof:trace(stop) before and after the code to be profiled.
All spawned processes are also traced. If you want some other filename than
the default, use fprof:trace(start, "my_fprof.trace").
When execution is finished, the raw profile can be processed using
fprof:profile(),
or fprof:profile(file, "my_fprof.trace")
for a non-default filename.
Finally create an informative table dumped on the console with
fprof:analyse(), or on file with
fprof:analyse(dest, []), or
fprof:analyse([{dest, "my_fprof.analysis"}, {cols, 120}])
for a wider listing of a non-default filename.

 Profiling a function

If you have one function that does the task that you want to profile, and the
function returns when the profiling should stop, it is convenient to use
fprof:apply(Module, Function, Args) for the tracing step.
If the tracing should continue after the function has returned, for
example if it is a start function that spawns processes to be
profiled, use
fprof:apply(M, F, Args, [continue | OtherOpts]).
The tracing has to be stopped at a suitable later time using
fprof:trace(stop).

 Immediate profiling

It is also possible to trace immediately into the profiling process that creates
the raw profile data, that is to short circuit the tracing and profiling steps
so that the filesystem is not used for tracing.
Do something like this:
{ok, Tracer} = fprof:profile(start),
fprof:trace([start, {tracer, Tracer}]),
%% Run code to profile
fprof:trace(stop);
This puts less load on the filesystem, but much more load on the Erlang runtime
system.

 lcnt - The Lock Profiler - tools v4.1.1

lcnt - The Lock Profiler

Internally in the Erlang runtime system locks are used to protect resources from
being updated from multiple threads in a fatal way. Locks are necessary to
ensure that the runtime system works properly, but it also introduces
limitations, namely lock contention and locking overhead.
With lock contention we mean when one thread locks a resource, and another
thread (or threads) tries to acquire the same resource at the same time. The
lock will deny the other thread access to the resource and the thread will be
blocked from continuing its execution. The second thread has to wait until the
first thread has completed its access to the resource and unlocked it. The
lcnt tool measures these lock conflicts.
Locks have an inherent cost in execution time and memory space. It takes time to
initialize, destroy, acquire, or release locks. To decrease lock contention
it is sometimes necessary to use finer-grained locking strategies. This
usually also increases the locking overhead. Hence there is a tradeoff between
lock contention and overhead. In general, lock contention increases with the
number of threads running concurrently.
The lcnt tool does not measure locking overhead.

 Enabling lock-counting

For investigation of locks in the emulator we use an internal tool called lcnt
(short for lock-count). The VM needs to be compiled with this option enabled. To
compile a lock-counting VM along with a normal VM, use:
cd $ERL_TOP
./configure --enable-lock-counter
make
Start the lock-counting VM like this:
$ERL_TOP/bin/erl -emu_type lcnt
To verify that lock counting is enabled check that [lock-counting] appears in
the status text when the VM is started.
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]

 Getting started

Once you have a lock counting enabled VM the module lcnt can be used. The
module is intended to be used from the current running nodes shell. To access
remote nodes use lcnt:clear(Node) and
lcnt:collect(Node).
All locks are continuously monitored and its statistics updated. Use
lcnt:clear/0 to initially clear all counters
before running any specific tests. This command will also reset the
internal duration timer.
To retrieve lock statistics information, use
lcnt:collect/0,1. The collect operation will
start a lcnt server if it not already started. All collected data
will be stored in an Erlang term and uploaded to the server along with
the duration time. The duration time is the time between
lcnt:clear/0,1 and
lcnt:collect/0,1.
Once the data is collected to the server it can be filtered, sorted, and printed
in multiple ways.

 Example of usage

Here is an example of running the Big Bang Benchmark:
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> lcnt:rt_opt({copy_save, true}).
false
2> lcnt:clear(), big:bang(1000), lcnt:collect().
ok
3> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 590799 8875 1.5022 37906 2.2167
 proc_msgq 1048 2515180 4667 0.1856 20962 1.2258
 proc_main 1048 2195317 23775 1.0830 1664 0.0973
ok
Another way to to profile a specific function is to use lcnt:apply/3 or
lcnt:apply/1, which calls lcnt:clear/0 before calling the function and
lcnt:collect/0 after its invocation. This method should only be used in
micro-benchmarks since it sets copy_save to true for the duration of the
function call, which may cause the emulator to run out of memory if attempted
under load.
1> lcnt:apply(fun() -> big:bang(1000) end).
1845411
2> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 582789 9237 1.5850 41929 2.2633
 proc_msgq 1047 2494483 4731 0.1897 11173 0.6031
 proc_main 1047 2192806 23283 1.0618 1500 0.0810
ok
The process locks are sorted after its class like all other locks. It is
convenient to look at specific processes and ports as classes. We can do this by
swapping class and class identifiers with lcnt:swap_pid_keys/0.
3> lcnt:swap_pid_keys().
ok
4> lcnt:conflicts([{print, [name, tries, ratio, time]}]).
 lock #tries collisions [%] time [us]
 ----- ------- --------------- ----------
 run_queue 582789 1.5850 41929
 <nonode@nohost.1042.0> 5692 0.5095 484
 <nonode@nohost.465.0> 4989 0.4410 393
 <nonode@nohost.347.0> 6319 2.1839 284
 <nonode@nohost.436.0> 6077 1.9747 198
 <nonode@nohost.307.0> 5071 1.3015 192
 <nonode@nohost.455.0> 5846 1.7106 186
 <nonode@nohost.565.0> 6305 1.2054 179
 <nonode@nohost.461.0> 5820 1.2715 176
 <nonode@nohost.173.0> 6329 1.4852 168
 <nonode@nohost.453.0> 5172 0.8701 167
 <nonode@nohost.741.0> 5306 0.4146 166
 <nonode@nohost.403.0> 5838 1.9870 160
 <nonode@nohost.463.0> 6346 1.5443 143
 <nonode@nohost.184.0> 5542 0.4331 141
 <nonode@nohost.289.0> 5260 0.2662 137
 <nonode@nohost.166.0> 5610 0.9447 127
 <nonode@nohost.189.0> 5354 0.5230 118
 <nonode@nohost.121.0> 5845 0.9239 115
 <nonode@nohost.104.0> 5140 0.7782 108
ok

 Example with Mnesia Transaction Benchmark

From the Erlang shell:
Erlang/OTP 27 [erts-15.0] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1] [jit] [lock-counting]

Eshell V15.0 (press Ctrl+G to abort, type help(). for help)
1> Conf = [{db_nodes, [node()]}, {driver_nodes, [node()]}, {replica_nodes, [node()]},
 {n_drivers_per_node, 10}, {n_branches, 1000}, {n_accounts_per_branch, 10},
 {replica_type, ram_copies}, {stop_after, 60000}, {reuse_history_id, true}], ok.
ok
2> mnesia_tpcb:init([{use_running_mnesia, false}|Conf]).
 .
 .
 .
ignore
Initial configuring of the benchmark is done. It is time to profile the actual
Mnesia benchmark:
3> lcnt:apply(fun() -> {ok,{time, Tps,_,_,_,_}} = mnesia_tpcb:run([{use_running_mnesia,
 true}|Conf]), Tps/60 end).
 .
 .
 .
50204.666666666664
The benchmark runs for 60 seconds (followed by verification and
analysis), and then returns the number of transactions per seconds.
4> lcnt:swap_pid_keys().
ok
5> lcnt:conflicts().
 lock id #tries #collisions collisions [%] time [us] duration [%]
 ----- --- ------- ------------ --------------- ---------- -------------
 run_queue 10 89329288 3227515 3.6131 5018119 8.3606
 mnesia_locker 5 64793236 8231226 12.7038 98654 0.1644
 db_tab 3012324 416847817 140631 0.0337 75308 0.1255
 <nonode@nohost.1158.0> 5 14499900 36934 0.2547 4878 0.0081
 <nonode@nohost.1157.0> 5 14157504 35797 0.2528 4727 0.0079
 <nonode@nohost.1163.0> 5 14194934 34510 0.2431 4403 0.0073
 <nonode@nohost.1164.0> 5 14149447 35326 0.2497 4150 0.0069
 <nonode@nohost.1166.0> 5 14316525 35675 0.2492 4116 0.0069
 <nonode@nohost.1159.0> 5 14241146 35358 0.2483 4101 0.0068
 <nonode@nohost.1162.0> 5 14224491 35182 0.2473 4094 0.0068
 <nonode@nohost.1160.0> 5 14190075 35328 0.2490 4075 0.0068
 <nonode@nohost.1165.0> 5 14308906 35031 0.2448 3896 0.0065
 <nonode@nohost.1161.0> 5 14457330 36182 0.2503 3856 0.0064
 mnesia_tm 5 28149333 179294 0.6369 1057 0.0018
 pix_lock 1024 132 1 0.7576 549 0.0009
 <nonode@nohost.85.0> 5 17 2 11.7647 87 0.0001
 <nonode@nohost.1156.0> 5 1335 6 0.4494 1 0.0000
ok
The id header represents the number of unique identifiers under a
class when the option {combine, true} is used (which is enabled by
default). It will otherwise show the specific identifier. The db_tab
listing shows 3,012,324 unique locks, which is one for each ETS table
created. Mnesia creates one ETS table for each transaction.
The listing shows also shows that the mnesia_locker process has highly contended locks.
Using lcnt:inspect/1 more information can be displayed for that process:
6> lcnt:inspect(mnesia_locker).
 lock id #tries #collisions collisions [%] time [us] duration [%] histogram [log2(us)]
 ----- --- ------- ------------ --------------- ---------- ------------- ---------------------
 mnesia_locker proc_main 19853372 7591248 38.2366 80550 0.1342 |. ...X........ |
 mnesia_locker proc_msgq 30917225 639627 2.0688 17126 0.0285 |. .X......... |
 mnesia_locker proc_status 9348426 351 0.0038 978 0.0016 | .xxX. . |
 mnesia_locker proc_btm 0 0 0.0000 0 0.0000 | |
 mnesia_locker proc_trace 4674213 0 0.0000 0 0.0000 | |
ok
Listing the conflicts without class combiner:
7> lcnt:conflicts([{combine, false}, {print, [name, id, tries, ratio, time]}]).
 lock id #tries collisions [%] time [us]
 ----- --- ------- --------------- ----------
 run_queue 2 31075249 3.5676 1728233
 run_queue 1 29738521 3.6348 1683219
 run_queue 3 27912150 3.6429 1573593
 mnesia_locker proc_main 19853372 38.2366 80550
 db_tab mnesia_transient_decision 3012281 2.5675 55104
 run_queue 4 512077 3.7041 29486
 mnesia_locker proc_msgq 30917225 2.0688 17126
 db_tab account 6044562 0.3599 7909
 db_tab branch 6026659 0.3132 5654
 db_tab teller 6044659 0.2684 4727
 <nonode@nohost.1158.0> proc_main 3207155 0.7178 3726
 <nonode@nohost.1163.0> proc_main 3138532 0.7485 3593
 <nonode@nohost.1157.0> proc_main 3133180 0.7156 3547
 <nonode@nohost.1166.0> proc_main 3165128 0.7609 3517
 <nonode@nohost.1164.0> proc_main 3128838 0.7525 3477
 <nonode@nohost.1160.0> proc_main 3137627 0.7559 3433
 <nonode@nohost.1162.0> proc_main 3144886 0.7509 3425
 <nonode@nohost.1159.0> proc_main 3149315 0.7487 3372
 <nonode@nohost.1161.0> proc_main 3196546 0.7591 3310
 <nonode@nohost.1165.0> proc_main 3164333 0.7483 3309
ok
In this scenario the locks for the scheduler's run queues dominate the time waiting
for locks. The most contended lock for ETS tables is for the mnesia_transient_decision
ETS table.
Here is how to show the information for the ETS tables.
8> lcnt:inspect(db_tab, [{print, [name, id, tries, colls, ratio, duration]}]).
 lock id #tries #collisions collisions [%] duration [%]
 ----- --- ------- ------------ --------------- -------------
 db_tab mnesia_transient_decision 3012281 77341 2.5675 0.0918
 db_tab account 6044562 21753 0.3599 0.0132
 db_tab branch 6026659 18873 0.3132 0.0094
 db_tab teller 6044659 16221 0.2684 0.0079
 db_tab history 3012281 4005 0.1330 0.0022
 db_tab mnesia_stats 3071064 2437 0.0794 0.0010
 db_tab mnesia_trans_store 15 0 0.0000 0.0000
 db_tab mnesia_decision 3012281 0 0.0000 0.0000
 db_tab schema 0 0 0.0000 0.0000
 db_tab dets 0 0 0.0000 0.0000
 db_tab dets_owners 0 0 0.0000 0.0000
 db_tab dets_registry 0 0 0.0000 0.0000
 db_tab mnesia_lock_queue 36154974 0 0.0000 0.0000
 db_tab mnesia_sticky_locks 12108098 0 0.0000 0.0000
 db_tab mnesia_tid_locks 27176721 0 0.0000 0.0000
 db_tab mnesia_held_locks 48321870 0 0.0000 0.0000
 db_tab mnesia_subscr 0 0 0.0000 0.0000
 db_tab mnesia_gvar 102680683 1 0.0000 0.0000
 db_tab user_functions 0 0 0.0000 0.0000
 db_tab shell_records 0 0 0.0000 0.0000
ok

 Deciphering the output

Typically high time values are bad and this is often the thing to look for.
However, one should also look for high lock acquisition frequencies (#tries)
since locks generate overhead and because high frequency could become
problematic if they begin to have conflicts even if it is not shown in a
particular test.

 The Big Bang Benchmark

-module(big).
-export([bang/1]).

pinger([], [], true) ->
 receive
	{procs, Procs, ReportTo} ->
	 pinger(Procs, [], ReportTo)
 end;
pinger([], [], false) ->
 receive {ping, From} -> From ! {pong, self()} end,
 pinger([],[],false);
pinger([], [], ReportTo) ->
 ReportTo ! {done, self()},
 pinger([],[],false);
pinger([], [Po|Pos] = Pongers, ReportTo) ->
 receive
	{ping, From} ->
	 From ! {pong, self()},
	 pinger([], Pongers, ReportTo);
	{pong, Po} ->
	 pinger([], Pos, ReportTo)
 end;
pinger([Pi|Pis], Pongers, ReportTo) ->
 receive {ping, From} -> From ! {pong, self()}
 after 0 -> ok
 end,
 Pi ! {ping, self()},
 pinger(Pis, [Pi|Pongers], ReportTo).

spawn_procs(N) when N =< 0 ->
 [];
spawn_procs(N) ->
 [spawn_link(fun () -> pinger([],[],true) end) | spawn_procs(N-1)].

send_procs([], Msg) ->
 Msg;
send_procs([P|Ps], Msg) ->
 P ! Msg,
 send_procs(Ps, Msg).

receive_msgs([]) ->
 ok;
receive_msgs([M|Ms]) ->
 receive
	M ->
	 receive_msgs(Ms)
 end.

bang(N) when integer(N) ->
 Procs = spawn_procs(N),
 RMsgs = lists:map(fun (P) -> {done, P} end, Procs),
 Start = now(),
 send_procs(Procs, {procs, Procs, self()}),
 receive_msgs(RMsgs),
 Stop = now(),
 lists:foreach(fun (P) -> exit(P, normal) end, Procs),
 timer:now_diff(Stop, Start).

 See Also

LCNT Reference Manual

 Xref - The Cross Reference Tool - tools v4.1.1

Xref - The Cross Reference Tool

Xref is a cross reference tool that can be used for finding dependencies between
functions, modules, applications and releases. It does so by analyzing the
defined functions and the function calls.
In order to make Xref easy to use, there are predefined analyses that perform
some common tasks. Typically, a module or a release can be checked for calls to
undefined functions. For the somewhat more advanced user there is a small but
flexible language that can be used for selecting parts of the analyzed
system and for doing some simple graph analyses on selected calls.
The following sections show some features of Xref, beginning with a module check
and a predefined analysis. Then follow examples that can be skipped on the first
reading; not all of the concepts used are explained, and it is assumed that the
reference manual has been at least skimmed.

 Module Check

Assume we want to check the following module:
-module(my_module).

-export([t/1]).

t(A) ->
 my_module:t2(A).

t2(_) ->
 true.
Cross reference data are read from BEAM files, so the first step when checking
an edited module is to compile it:
1> c(my_module, debug_info).
./my_module.erl:10: Warning: function t2/1 is unused
{ok, my_module}
The debug_info option ensures that the BEAM file contains debug information,
which makes it possible to find unused local functions.
The module can now be checked for calls to
deprecated functions, calls to
undefined functions, and for unused local
functions:
2> xref:m(my_module)
[{deprecated,[]},
 {undefined,[{{my_module,t,1},{my_module,t2,1}}]},
 {unused,[{my_module,t2,1}]}]
m/1 is also suitable for checking that the BEAM file of a module that is about
to be loaded into a running a system does not call any undefined functions. In
either case, the code path of the code server (see the module code) is used
for finding modules that export externally called functions not exported by the
checked module itself, so called library modules.

 Predefined Analysis

In the last example the module to analyze was given as an argument to m/1, and
the code path was (implicitly) used as library path. In
this example an xref server will be used, which makes it
possible to analyze applications and releases, and also to select the library
path explicitly.
Each Xref server is referred to by a unique name. The name is given when
creating the server:
1> xref:start(s).
{ok,<0.27.0>}
Next the system to be analyzed is added to the Xref server. Here the system will
be OTP, so no library path will be needed. Otherwise, when analyzing a system
that uses OTP, the OTP modules are typically made library modules by setting the
library path to the default OTP code path (or to code_path, see the
reference manual). By default, the names of read BEAM
files and warnings are output when adding analyzed modules, but these messages
can be avoided by setting default values of some options:
2> xref:set_default(s, [{verbose,false}, {warnings,false}]).
ok
3> xref:add_release(s, code:lib_dir(), {name, otp}).
{ok,otp}
add_release/3 assumes that all subdirectories of the library directory
returned by code:lib_dir() contain applications;
the effect is that of reading all BEAM files for the application.
It is now easy to check the release for calls to undefined functions:
4> xref:analyze(s, undefined_function_calls).
{ok, [...]}
We can now continue with further analyses, or we can delete the Xref server:
5> xref:stop(s).
The check for calls to undefined functions is an example of a predefined
analysis, probably the most useful one. Other examples are the analyses that
find unused local functions, or functions that call some given functions. See
the analyze/2,3 functions for a complete list of predefined
analyses.
Each predefined analysis is a shorthand for a query, a
sentence of a tiny language providing cross reference data as values of
predefined variables. The check for calls to
undefined functions can thus be stated as a query:
4> xref:q(s, "(XC - UC) || (XU - X - B)").
{ok,[...]}
The query asks for the restriction of external calls except the unresolved calls
to calls to functions that are externally used but neither exported nor built-in
functions (the || operator restricts the used functions while the | operator
restricts the calling functions). The - operator returns the difference of two
sets, and the + operator to be used below returns the union of two sets.
The relationships between the predefined variables XU, X, B and a few
others are worth elaborating upon. The reference manual mentions two ways of
expressing the set of all functions, one that focuses on how they are defined:
X + L + B + U, and one that focuses on how they are used: UU + LU + XU. The
reference also mentions some facts about the variables:
	F is equal to L + X (the defined functions are the local functions and the
external functions);
	U is a subset of XU (the unknown functions are a subset of the externally
used functions since the compiler ensures that locally used functions are
defined);
	B is a subset of XU (calls to built-in functions are always external by
definition, and unused built-in functions are ignored);
	LU is a subset of F (the locally used functions are either local functions
or exported functions, again ensured by the compiler);
	UU is equal to F - (XU + LU) (the unused functions are defined functions
that are neither used externally nor locally);
	UU is a subset of F (the unused functions are defined in analyzed
modules).

Using these facts, the two small circles in the picture below can be combined.
[image: Definition and use of functions]
It is often clarifying to mark the variables of a query in such a circle. This
is illustrated in the picture below for some of the predefined analyses. Note
that local functions used by local functions only are not marked in the
locals_not_used circle.
[image: Some predefined analyses as subsets of all functions]

 Expressions

The module check and the predefined analyses are useful, but limited. Sometimes
more flexibility is needed, for instance one might not need to apply a graph
analysis on all calls, but some subset will do equally well. That flexibility is
provided with a simple language. Below are some expressions of the language with
comments, focusing on elements of the language rather than providing useful
examples. The analyzed system is assumed to be OTP, so in order to run the
queries, first evaluate these calls:
xref:start(s).
xref:add_release(s, code:root_dir()).
	xref:q(s, "(Fun) xref : Mod"). - All functions of the xref module.

	xref:q(s, "xref : Mod * X"). - All exported functions of the xref
module. The first operand of the intersection operator * is implicitly
converted to the more special type of the second operand.

	xref:q(s, "(Mod) tools"). - All modules of the Tools application.

	xref:q(s, '"xref_.*" : Mod'). - All modules with a name beginning with
xref_.

	xref:q(s, "# E | X "). - Number of calls from exported functions.

	xref:q(s, "XC || L "). - All external calls to local functions.

	xref:q(s, "XC * LC"). - All calls that have both an external and a local
version.

	xref:q(s, "(LLin) (LC * XC)"). - The lines where the local calls of the
last example are made.

	xref:q(s, "(XLin) (LC * XC)"). - The lines where the external calls of
the example before last are made.

	xref:q(s, "XC * (ME - strict ME)"). - External calls within some module.

	xref:q(s, "E ||| kernel"). - All calls within the Kernel application.

	xref:q(s, "closure E | kernel || kernel"). - All direct and indirect
calls within the Kernel application. Both the calling and the used functions
of indirect calls are defined in modules of the kernel application, but it is
possible that some functions outside the kernel application are used by
indirect calls.

	xref:q(s, "{toolbar,debugger}:Mod of ME"). - A chain of module calls
from toolbar to debugger, if there is such a chain, otherwise false. The
chain of calls is represented by a list of modules, toolbar being the first
element and debuggerthe last element.

	xref:q(s, "closure E | toolbar:Mod || debugger:Mod"). - All (in)direct
calls from functions in toolbar to functions in debugger.

	xref:q(s, "(Fun) xref -> xref_base"). - All function calls from xref
to xref_base.

	xref:q(s, "E * xref -> xref_base"). - Same interpretation as last
expression.

	xref:q(s, "E || xref_base | xref"). - Same interpretation as last
expression.

	xref:q(s, "E * [xref -> lists, xref_base -> digraph]"). - All function
calls from xref to lists, and all function calls from xref_base to
digraph.

	xref:q(s, "E | [xref, xref_base] || [lists, digraph]"). - All function
calls from xref and xref_base to lists and digraph.

	xref:q(s, "components EE"). - All strongly connected components of the
Inter Call Graph. Each component is a set of exported or unused local
functions that call each other (in)directly.

	xref:q(s, "X * digraph * range (closure (E | digraph) | (L * digraph))"). -
All exported functions of the digraph module used (in)directly by some
function in digraph.

	xref:q(s, "L * yeccparser:Mod - range (closure (E |

	yeccparser:Mod) | (X * yeccparser:Mod))"). - The interpretation is left
as an exercise.

 Graph Analysis

The list representation of graphs is used analyzing
direct calls, while the digraph representation is suited for analyzing
indirect calls. The restriction operators (|, || and |||) are the only
operators that accept both representations. This means that in order to analyze
indirect calls using restriction, the closure operator (which creates the
digraph representation of graphs) has to be explicitly applied.
As an example of analyzing indirect calls, the following Erlang function tries
to answer the question: if we want to know which modules are used indirectly by
some module(s), is it worth while using the
function graph rather than the module graph? Recall that
a module M1 is said to call a module M2 if there is some function in M1 that
calls some function in M2. It would be nice if we could use the much smaller
module graph, since it is available also in the light weight
modulesmode of Xref servers.
t(S) ->
 {ok, _} = xref:q(S, "Eplus := closure E"),
 {ok, Ms} = xref:q(S, "AM"),
 Fun = fun(M, N) ->
 Q = io_lib:format("# (Mod) (Eplus | ~p : Mod)", [M]),
 {ok, N0} = xref:q(S, lists:flatten(Q)),
 N + N0
 end,
 Sum = lists:foldl(Fun, 0, Ms),
 ok = xref:forget(S, 'Eplus'),
 {ok, Tot} = xref:q(S, "# (closure ME | AM)"),
 100 * ((Tot - Sum) / Tot).
Comments on the code:
	We want to find the reduction of the closure of the function graph to modules.
The direct expression for doing that would be (Mod) (closure E | AM), but
then we would have to represent all of the transitive closure of E in memory.
Instead the number of indirectly used modules is found for each analyzed
module, and the sum over all modules is calculated.
	A user variable is employed for holding the digraph representation of the
function graph for use in many queries. The reason is efficiency. As opposed
to the = operator, the := operator saves a value for subsequent analyses.
Here might be the place to note that equal subexpressions within a query are
evaluated only once; = cannot be used for speeding things up.
	Eplus | ~p : Mod. The | operator converts the second operand to the type
of the first operand. In this case the module is converted to all functions of
the module. It is necessary to assign a type to the module (: Mod),
otherwise modules like kernel would be converted to all functions of the
application with the same name; the most general constant is used in cases of
ambiguity.

	Since we are only interested in a ratio, the unary operator # that counts
the elements of the operand is used. It cannot be applied to the digraph
representation of graphs.
	We could find the size of the closure of the module graph with a loop similar
to one used for the function graph, but since the module graph is so much
smaller, a more direct method is feasible.

When the Erlang function t/1 was applied to an Xref server loaded with the
current version of OTP, the returned value was close to 84 (percent). This means
that the number of indirectly used modules is approximately six times greater
when using the module graph. So the answer to the above stated question is that
it is definitely worth while using the function graph for this particular
analysis. Finally, note that in the presence of unresolved calls, the graphs may
be incomplete, which means that there may be indirectly used modules that do not
show up.

 Erlang mode for Emacs - tools v4.1.1

Erlang mode for Emacs

Possibly the most important feature of an editor designed for programmers is the
ability to indent a line of code in accordance with the structure of the
programming language. The Erlang mode does, of course, provide this feature. The
layout used is based on the common use of the language. The mode also provides
things as syntax highlighting, electric commands, module name verification,
comment support including paragraph filling, skeletons, tags support etc.
In the following descriptions the use of the word Point means: "Point can be
seen as the position of the cursor. More precisely, the point is the position
between two characters while the cursor is drawn over the character following
the point".

 Indent

The following command are directly available for indentation.
	 TAB (erlang-indent-command) - Indents the current line of code.
	 M-C-\ (indent-region) - Indents all lines in the region.
	 M-l (indent-for-comment) - Insert a comment character to the right of
the code on the line (if any).

Lines containing comment are indented differently depending on the number of
%-characters used:
	 Lines with one %-character is indented to the right of the code. The column
is specified by the variable comment-column, by default column 48 is used.
	 Lines with two %-characters will be indented to the same depth as code would
have been in the same situation.
	 Lines with three of more %-characters are indented to the left margin.
	 C-c C-q (erlang-indent-function) - Indents the current Erlang
function.
	 M-x erlang-indent-clause RET - Indent the current Erlang clause.
	 M-x erlang-indent-current-buffer RET - Indent the entire buffer.

 Edit - Fill Comment

When editing normal text in text mode you can let Emacs reformat the text by the
fill-paragraph command. This command will not work for comments since it will
treat the comment characters as words. The Erlang editing mode provides a
command that knows about the Erlang comment structure and can be used to fill
text paragraphs in comments. Ex:
%% This is just a very simple test to show
%% how the Erlang fill
%% paragraph command works.
Clearly, the text is badly formatted. Instead of formatting this paragraph line
by line, let's try erlang-fill-paragraph by pressing M-q. The result is:
%% This is just a very simple test to show how the Erlang fill
%% paragraph command works.

 Edit - Comment/Uncomment Region

C-c C-c will put comment characters at the beginning of all lines in a
marked region. If you want to have two comment characters instead of one you can
do C-u 2 C-c C-c
C-c C-u will undo a comment-region command.

 Edit - Moving the point

	 M-C-a (erlang-beginning-of-function) - Move the point to the beginning
of the current or preceding Erlang function. With an numeric argument (ex
C-u 2 M-C-a) the function skips backwards over this many Erlang
functions. Should the argument be negative the point is moved to the
beginning of a function below the current function.
	 C-c M-a (erlang-beginning-of-clause) - As above but move point to the
beginning of the current or preceding Erlang clause.
	 M-C-e (erlang-end-of-function) - Move to the end of the current or
following Erlang function. With an numeric argument (ex C-u 2 M-C-e) the
function skips backwards over this many Erlang functions. Should the
argument be negative the point is moved to the end of a function below the
current function.
	 C-c M-e (erlang-end-of-clause) - As above but move point to the end of
the current or following Erlang clause.

 Edit - Marking

	 M-C-h (erlang-mark-function) - Put the region around the current
Erlang function. The point is placed in the beginning and the mark at the
end of the function.
	 C-c M-h (erlang-mark-clause) Put the region around the current Erlang
clause. The point is placed in the beginning and the mark at the end of the
function.

 Edit - Function Header Commands

	 C-c C-j (erlang-generate-new-clause) - Create a new clause in the
current Erlang function. The point is placed between the parentheses of the
argument list.
	 C-c C-y (erlang-clone-arguments) - Copy the function arguments of the
preceding Erlang clause. This command is useful when defining a new clause
with almost the same argument as the preceding.

 Edit - Alignment

	 C-c C-a (align-current) - aligns comments, arrows, assignments,
and type annotations around the cursor.

Example:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H); % recurse
sum([], Sum) -> Sum. % base case

-record { two :: int(), % hello
 three = hello :: string(), % there
 four = 42 :: int() }.

becomes:

sum(L) -> sum(L, 0).
sum([H|T], Sum) -> sum(T, Sum + H); % recurse
sum([], Sum) -> Sum. % base case

-record { two :: int(), % hello
 three = hello :: string(), % there
 four = 42 :: int() }.

 Syntax highlighting

The syntax highlighting can be activated from the Erlang menu. There are four
different alternatives:
	 Off: Normal black and white display.
	 Level 1: Function headers, reserved words, comments, strings, quoted atoms,
and character constants will be colored.
	 Level 2: The above, attributes, Erlang bif:s, guards, and words in comments
enclosed in single quotes will be colored.
	 Level 3: The above, variables, records, and macros will be colored. (This
level is also known as the Christmas tree level.)

 Tags

For the tag commands to work it requires that you have generated a tag file. See
Erlang mode users guide
	 M-. (find-tag) - Find a function definition. The default value is the
function name under the point.
	 Find Tag (erlang-find-tag) - Like the Elisp-function
find-tag'. Capable of retrieving Erlang modules. Tags can be given on the formstag',
module:',module:tag'.
	 M-+ (erlang-find-next-tag) - Find the next occurrence of tag.
	 M-TAB (erlang-complete-tag) - Perform completion on the tag entered in
a tag search. Completes to the set of names listed in the current tags
table.
	 Tags aprops (tags-apropos) - Display list of all tags in tags table REGEXP
matches.
	 C-x t s (tags-search) - Search through all files listed in tags table
for match for REGEXP. Stops when a match is found.

 Skeletons

A skeleton is a piece of pre-written code that can be inserted into the buffer.
Erlang mode comes with a set of predefined skeletons. The skeletons can be
accessed either from the Erlang menu of from commands named
tempo-template-erlang-*, as the skeletons is defined using the standard Emacs
package "tempo". Here follows a brief description of the available skeletons:
	 Simple skeletons: If, Case, Receive, Receive After, Receive Loop - Basic
code constructs.
	 Header elements: Module, Author - These commands insert lines on the form
-module('xxx'). and -author('my@home').. They can be used directly, but
are also used as part of the full headers described below.
	 Full Headers: Small (minimum requirement), Medium (with fields for basic
information about the module), and Large Header (medium header with some
extra layout structure).
	 Small Server - skeleton for a simple server not using OTP.
	 Application - skeletons for the OTP application behavior
	 Supervisor - skeleton for the OTP supervisor behavior
	 Supervisor Bridge - skeleton for the OTP supervisor bridge behavior
	 gen_server - skeleton for the OTP gen_server behavior
	 gen_event - skeleton for the OTP gen_event behavior
	 gen_fsm - skeleton for the OTP gen_fsm behavior
	 gen_statem (StateName/3) - skeleton for the OTP gen_statem behavior using
state name functions
	 gen_statem (handle_event/4) - skeleton for the OTP gen_statem behavior using
one state function
	 Library module - skeleton for a module that does not implement a process.
	 Corba callback - skeleton for a Corba callback module.
	 Erlang test suite - skeleton for a callback module for the erlang test
server.

 Shell

	 New shell (erlang-shell) - Starts a new Erlang shell.
	 C-c C-z, (erlang-shell-display) - Displays an Erlang shell, or starts
a new one if there is no shell started.

 Compile

	 C-c C-k, (erlang-compile) - Compiles the Erlang module in the current
buffer. You can also use C-u C-c C-k to debug compile the module with
the debug options debug_info and export_all.
	 C-c C-l, (erlang-compile-display) - Display compilation output.
	 C-u C-x` Start parsing the compiler output from the beginning. This
command will place the point on the line where the first error was found.
	 C-x` (erlang-next-error) - Move the point on to the next error.
The buffer displaying the compilation errors will be updated so that the
current error will be visible.

 Man

On unix you can view the manual pages in emacs. In order to find the manual
pages, the variable erlang-root-dir should be bound to the name of the
directory containing the Erlang installation. The name should not include the
final slash. Practically, you should add a line on the following form to your
~/.emacs,
(setq erlang-root-dir "/the/erlang/root/dir/goes/here")

 Starting IMenu

	 M-x imenu-add-to-menubar RET - This command will create the IMenu menu
containing all the functions in the current buffer.The command will ask you
for a suitable name for the menu. Not supported by Xemacs.

 Version

	 M-x erlang-version RET - This command displays the version number of the
Erlang editing mode. Remember to always supply the version number when
asking questions about the Erlang mode.

 cover - tools v4.1.1

cover

A Coverage Analysis Tool for Erlang
The module cover provides a set of functions for coverage analysis
of Erlang programs, counting how many times each executable line of
code is executed when a program is run. Executable lines are
lines in the body of a clause in a function, case,
receive, or try. Lines in clause heads, blank lines, and lines
containing only comments are not executable.
Coverage analysis can be used to verify that test cases covers all
relevant line in the code being test. It can also be helpful when
looking for bottlenecks in the code.
Before any analysis can take place, the involved modules has to be
cover-compiled. This means that some extra information is added to
the module before it is compiled into a binary which then is
loaded. The source file of the module is not affected and no .beam
file is created. If the runtime system supports coverage natively,
Cover will automatically use that functionality to lower the execution
overhead for cover-compiled code.
Change
Native coverage support was added in Erlang/OTP 27.

Each time a function in a cover-compiled module is called, information about the
call is added to an internal database of Cover. The coverage analysis is
performed by examining the contents of the Cover database. The output Answer
is determined by two parameters: Level and Analysis.
	Level = module
Answer = {Module,Value}, where Module is the module name.

	Level = function
Answer = [{Function,Value}], one tuple for each function in the module. A
function is specified by its module name M, function name F and arity A
as a tuple {M,F,A}.

	Level = clause
Answer = [{Clause,Value}], one tuple for each clause in the module. A clause
is specified by its module name M, function name F, arity A and position
in the function definition C as a tuple {M,F,A,C}.

	Level = line
Answer = [{Line,Value}], one tuple for each executable line in the module. A
line is specified by its module name M and line number in the source file
N as a tuple {M,N}.

	Analysis = coverage
Value = {Cov,NotCov} where Cov is the number of executable lines in the
module, function, clause or line that have been executed at least once and
NotCov is the number of executable lines that have not been executed.

	Analysis = calls
Value = Calls which is the number of times the module, function, or clause
has been called. In the case of line level analysis, Calls is the number of
times the line has been executed.

 Distribution

Cover can be used in a distributed Erlang system. One of the nodes in the system
has to be selected as the main node, and all Cover commands must be
executed from that node. The error reason not_main_node is returned if an
interface function is called on one of the remote nodes.
Use cover:start/1 and cover:stop/1 to add or remove nodes. The
same cover-compiled code will be loaded on each node, and analysis
will collect and sum up coverage data results from all nodes.
To only collect data from remote nodes without stopping cover on those nodes,
use cover:flush/1
If the connection to a remote node goes down, the main node will mark it as
lost. If the node comes back it will be added again. If the remote node was
alive during the disconnected period, cover data from before and during this
period will be included in the analysis.

 Summary

 Types

 cprof - tools v4.1.1

cprof

A simple Call Count Profiling Tool using breakpoints for minimal runtime
performance impact.
The cprof module is used to profile a program to find out how many times
different functions are called. To minimize runtime performance impact,
breakpoints containing counters are used.
Since breakpoints are used there is no need for special compilation of the
modules to be profiled. These breakpoints can only be set on BEAM code, so
BIFs cannot be call-count traced.
The size of the call counters is the host machine word size. One bit is used
when pausing the counter, so the maximum counter value for a 32-bit host
is 2,147,483,647.
The profiling result is delivered as a term containing a sorted list of entries,
one per module. Each module entry contains a sorted list of functions. The
sorting order in both cases is of decreasing call count.
Call count tracing is lightweight compared to other forms of tracing,
such as eprof or fprof, since no trace messages have to be
generated. Some measurements indicates that the performance degradation is
about 10 percent.
For more information and some examples, see the
User's Guide for cprof.

 Summary

 Types

 eprof - tools v4.1.1

eprof

A Time Profiling Tool for Erlang
The module eprof provides a set of functions for time profiling of Erlang
programs to find out how the execution time is used. The profiling is done using
the Erlang trace BIFs. Tracing of local function calls for a specified set of
processes is enabled when profiling is begun, and disabled when profiling is
stopped.
When using Eprof, expect a slowdown in program execution.

 Summary

 Types

 fprof - tools v4.1.1

fprof

A Time Profiling Tool using trace to file for minimal runtime performance
impact.
This module is used to profile a program to find out how the execution time is
used. Tracing to file is used to minimize the runtime performance degradation.
The fprof module uses tracing to collect profiling data, hence there is no
need for special compilation of any module to be profiled. When it starts
tracing, fprof will erase all previous tracing in the node and set the
necessary trace flags on the profiling target processes as well as local call
trace on all functions in all loaded modules and all modules to be loaded.
fprof disable all tracing in the node when it stops tracing.
fprof presents both own time that is, how much time a function has
used for its own execution, and accumulated time that is, including
called functions. All presented times are collected using trace
timestamps. fprof tries to collect CPU time timestamps, if the host
machine OS supports it. Therefore, the times can be wallclock times and
OS scheduling will randomly strike all called functions in a
presumably fair way.
However, if the profiling time is short, and the host machine OS does
not support high resolution CPU time measurements, a few OS
schedulings can show up as ridiculously long execution times for
functions doing practically nothing. As an example, it has been
observed that a function that more or less just composing a tuple, was
running 100 times slower than normal. When tracing was repeated, the
execution time was normal.
Profiling is essentially done in 3 steps:
	Tracing: to a file. The trace data contains entries for function
calls, returns to function, process scheduling, other process
related events (for example spawn), and garbage collection. All trace
entries are timestamped.

	Profiling: the trace file is read, the execution call stack is
simulated, and raw profile data is calculated from the simulated call stack
and the trace timestamps. The profile data is stored in the fprof server
state. During this step the trace data may be dumped in text format to file or
console.

	Analysing: the raw profile data is sorted, filtered and dumped in
text format either to file or console. The text format intended to be both
readable for a human reader, as well as parsable with the standard erlang
parsing tools.

Since fprof sends trace data to afile, the runtime performance
degradation is minimized, but still far from negligible, especially
for programs that themselves use the filesystem heavily. Where the
trace file is placed is also important, for example, on Unix systems
/tmp is usually a good choice since it is essentially a RAM disk,
while any network-mounted disk is a bad idea.
fprof can also skip the file step and trace to a tracer process that does the
profiling in runtime.

 Analysis format

This section describes the output format of the analyse/1 function.
The format is parsable with the standard Erlang parsing tools
erl_scan and erl_parse, file:consult/1, or io:read/2. The
parse format is not described here — it should be easy enough for the
interested reader to try it out. Note that some flags to
analyse/1 will affect the format.
The following example was run on Erlang/OTP R8 on Solaris 8; all OTP
internals in this example are version dependent.
As an example, we will use the following function, which is a
slightly modified benchmark function from module file:
-module(foo).
-export([create_file_slow/2]).

create_file_slow(Name, N) when is_integer(N), N >= 0 ->
 {ok, FD} =
 file:open(Name, [raw, write, delayed_write, binary]),
 if N > 256 ->
 ok = file:write(FD,
 lists:map(fun (X) -> <<X:32/unsigned>> end,
 lists:seq(0, 255))),
 ok = create_file_slow(FD, 256, N);
 true ->
 ok = create_file_slow(FD, 0, N)
 end,
 ok = file:close(FD).

create_file_slow(FD, M, M) ->
 ok;
create_file_slow(FD, M, N) ->
 ok = file:write(FD, <<M:32/unsigned>>),
 create_file_slow(FD, M+1, N).
Let us have a look at the printout after running:
1> fprof:apply(foo, create_file_slow, [junk, 1024]).
2> fprof:profile().
3> fprof:analyse().
The printout starts with:
%% Analysis results:
{ analysis_options,
 [{callers, true},
 {sort, acc},
 {totals, false},
 {details, true}]}.

% CNT ACC OWN
[{ totals, 9627, 1691.119, 1659.074}]. %%%
The CNT column shows the total number of function calls that was found in the
trace. In the ACC column is the total time of the trace from first timestamp to
last. And in the OWN column is the sum of the execution time in functions found
in the trace, not including called functions. In this case it is very close to
the ACC time since the emulator had practically nothing to do except
executing our test program.
All time values in the printout are in milliseconds.
The printout continues:
% CNT ACC OWN
[{ "<0.28.0>", 9627,undefined, 1659.074}]. %%
This is the printout header of one process. The printout contains only this one
process since we called fprof:apply/3 that traces only the current process.
Therefore the CNT and OWN columns perfectly matches the totals above. The ACC
column is undefined since summing the ACC times of all calls in the process
makes no sense — one would get something like the ACC value from totals above
multiplied by the average depth of the call stack.
All paragraphs up to the next process header only concerns function calls within
this process.
Now we come to something more interesting:
{[{undefined, 0, 1691.076, 0.030}],
 { {fprof,apply_start_stop,4}, 0, 1691.076, 0.030}, %
 [{{foo,create_file_slow,2}, 1, 1691.046, 0.103},
 {suspend, 1, 0.000, 0.000}]}.

{[{{fprof,apply_start_stop,4}, 1, 1691.046, 0.103}],
 { {foo,create_file_slow,2}, 1, 1691.046, 0.103}, %
 [{{file,close,1}, 1, 1398.873, 0.019},
 {{foo,create_file_slow,3}, 1, 249.678, 0.029},
 {{file,open,2}, 1, 20.778, 0.055},
 {{lists,map,2}, 1, 16.590, 0.043},
 {{lists,seq,2}, 1, 4.708, 0.017},
 {{file,write,2}, 1, 0.316, 0.021}]}.
The printout consists of one paragraph per called function. The function
marked with % is the one the paragraph concerns — foo:create_file_slow/2.
Above the marked function are the calling functions — those that has called
the marked, and below are those called by the marked function.
The paragraphs are per default sorted in descending order of the ACC column for
the marked function. The calling list and called list within one paragraph are
also per default sorted in descending order of their ACC column.
The columns are:
	CNT - the number of times the function has been called
	ACC - the time spent in the function including called functions
	OWN - the time spent in the function not including called functions

The rows for the calling functions contain statistics for the marked
function with the constraint that only the occasions when a call was made from
the row's function to the marked function are accounted for.
The row for the marked function simply contains the sum of all calling rows.
The rows for the called functions contains statistics for the row's function
with the constraint that only the occasions when a call was made from the
marked to the row's function are accounted for.
So, we see that foo:create_file_slow/2 used very little time for its own
execution. It spent most of its time in file:close/1. The function
foo:create_file_slow/3 that writes 3/4 of the file contents is the second
biggest time thief.
We also see that the call to file:write/2 that writes 1/4 of the file contents
takes very little time in itself. What takes time is to build the data
(lists:seq/2 and lists:map/2).
The function undefined that has called fprof:apply_start_stop/4 is an
unknown function because that call was not recorded in the trace. It was only
recorded that the execution returned from fprof:apply_start_stop/4 to some
other function above in the call stack, or that the process exited from there.
Let us continue down the printout to find:
{[{{foo,create_file_slow,2}, 1, 249.678, 0.029},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}],
 { {foo,create_file_slow,3}, 769, 249.678, 23.323}, %
 [{{file,write,2}, 768, 220.314, 14.539},
 {suspend, 57, 6.041, 0.000},
 {{foo,create_file_slow,3}, 768, 0.000, 23.294}]}.
If you compare with the code you will see there also that
foo:create_file_slow/3 was called only from foo:create_file_slow/2 and
itself, and called only file:write/2, note the number of calls to
file:write/2. But here we see that suspend was called a few times. This is a
pseudo function that indicates that the process was suspended while executing in
foo:create_file_slow/3, and since there is no receive or erlang:yield/0 in
the code, it must be Erlang scheduling suspensions, or the trace file driver
compensating for large file write operations (these are regarded as a schedule
out followed by a schedule in to the same process).
Let us find the suspend entry:
{[{{file,write,2}, 53, 6.281, 0.000},
 {{foo,create_file_slow,3}, 57, 6.041, 0.000},
 {{prim_file,drv_command,4}, 50, 4.582, 0.000},
 {{prim_file,drv_get_response,1}, 34, 2.986, 0.000},
 {{lists,map,2}, 10, 2.104, 0.000},
 {{prim_file,write,2}, 17, 1.852, 0.000},
 {{erlang,port_command,2}, 15, 1.713, 0.000},
 {{prim_file,drv_command,2}, 22, 1.482, 0.000},
 {{prim_file,translate_response,2}, 11, 1.441, 0.000},
 {{prim_file,'-drv_command/2-fun-0-',1}, 15, 1.340, 0.000},
 {{lists,seq,4}, 3, 0.880, 0.000},
 {{foo,'-create_file_slow/2-fun-0-',1}, 5, 0.523, 0.000},
 {{erlang,bump_reductions,1}, 4, 0.503, 0.000},
 {{prim_file,open_int_setopts,3}, 1, 0.165, 0.000},
 {{prim_file,i32,4}, 1, 0.109, 0.000},
 {{fprof,apply_start_stop,4}, 1, 0.000, 0.000}],
 { suspend, 299, 32.002, 0.000}, %
 []}.
We find no particularly long suspend times, so no function seems to have waited
in a receive statement. Actually, prim_file:drv_command/4 contains a receive
statement, but in this test program, the message lies in the process receive
buffer when the receive statement is entered. We also see that the total suspend
time for the test run is small.
The suspend pseudo function has an OWN time of zero. This is to prevent
the process total OWN time from including time in suspension. Whether suspend
time is really ACC or OWN time is more of a philosophical question.
Now we look at another interesting pseudo function, garbage_collect:
{[{{prim_file,drv_command,4}, 25, 0.873, 0.873},
 {{prim_file,write,2}, 16, 0.692, 0.692},
 {{lists,map,2}, 2, 0.195, 0.195}],
 { garbage_collect, 43, 1.760, 1.760}, %
 []}.
Here we see that no function stands out, which is very normal.
The garbage_collect pseudo function has not an OWN time of zero like
suspend, instead it is equal to the ACC time.
Garbage collection often occurs while a process is suspended, but fprof hides
this fact by pretending that the suspended function was first unsuspended and
then garbage collected. Otherwise the printout would show garbage_collect
being called from suspend, but not which function that might have caused the
garbage collection.
Let us now get back to the test code:
{[{{foo,create_file_slow,3}, 768, 220.314, 14.539},
 {{foo,create_file_slow,2}, 1, 0.316, 0.021}],
 { {file,write,2}, 769, 220.630, 14.560}, %
 [{{prim_file,write,2}, 769, 199.789, 22.573},
 {suspend, 53, 6.281, 0.000}]}.
Not unexpectedly, we see that file:write/2 was called from
foo:create_file_slow/3 and foo:create_file_slow/2. The number of calls in
each case as well as the used time are also confirms the previous results.
We see that file:write/2 only calls prim_file:write/2, but let us refrain
from digging into the internals of the kernel application.
If we nevertheless do dig down we find the call to the linked-in driver
that does the file operations towards the host operating system:
{[{{prim_file,drv_command,4}, 772, 1458.356, 1456.643}],
 { {erlang,port_command,2}, 772, 1458.356, 1456.643}, %
 [{suspend, 15, 1.713, 0.000}]}.
This is 86 % of the total run time, and as we saw before it is the close
operation the absolutely biggest contributor. We find a comparison ratio a
little bit up in the call stack:
{[{{prim_file,close,1}, 1, 1398.748, 0.024},
 {{prim_file,write,2}, 769, 174.672, 12.810},
 {{prim_file,open_int,4}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.147, 0.016}],
 { {prim_file,drv_command,2}, 772, 1593.322, 12.867}, %
 [{{prim_file,drv_command,4}, 772, 1578.973, 27.265},
 {suspend, 22, 1.482, 0.000}]}.
The time for file operations in the linked in driver distributes itself as 1 %
for open, 11 % for write, and 87 % for close. All data is probably buffered in
the operating system until the close.
The observant reader may notice that the ACC times for
prim_file:drv_command/2 and prim_file:drv_command/4 is not equal between the
paragraphs above, even though it is easy to believe that
prim_file:drv_command/2 is just a passthrough function.
The missing time can be found in the paragraph for prim_file:drv_command/4
where it is evident that not only prim_file:drv_command/2 is called but also a
fun:
{[{{prim_file,drv_command,2}, 772, 1578.973, 27.265}],
 { {prim_file,drv_command,4}, 772, 1578.973, 27.265}, %
 [{{erlang,port_command,2}, 772, 1458.356, 1456.643},
 {{prim_file,'-drv_command/2-fun-0-',1}, 772, 87.897, 12.736},
 {suspend, 50, 4.582, 0.000},
 {garbage_collect, 25, 0.873, 0.873}]}.
And some more missing time can be explained by the fact that
prim_file:open_int/4 both calls prim_file:drv_command/2 directly as well as
through prim_file:open_int_setopts/3, which complicates the picture.
{[{{prim_file,open,2}, 1, 20.309, 0.029},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}],
 { {prim_file,open_int,4}, 2, 20.309, 0.086}, %
 [{{prim_file,drv_command,2}, 1, 19.755, 0.017},
 {{prim_file,open_int_setopts,3}, 1, 0.360, 0.032},
 {{prim_file,drv_open,2}, 1, 0.071, 0.030},
 {{erlang,list_to_binary,1}, 1, 0.020, 0.020},
 {{prim_file,i32,1}, 1, 0.017, 0.017},
 {{prim_file,open_int,4}, 1, 0.000, 0.057}]}.
.
.
.
{[{{prim_file,open_int,4}, 1, 0.360, 0.032},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}],
 { {prim_file,open_int_setopts,3}, 2, 0.360, 0.048}, %
 [{suspend, 1, 0.165, 0.000},
 {{prim_file,drv_command,2}, 1, 0.147, 0.016},
 {{prim_file,open_int_setopts,3}, 1, 0.000, 0.016}]}.

 Notes

The actual supervision of execution times is in itself a CPU-intensive activity.
A message is written on the trace file for every function call that is made by
the profiled code.
The ACC time calculation is sometimes difficult to make correct, since it is
difficult to define. This happens especially when a function occurs in several
instances in the call stack, for example by calling itself perhaps through other
functions and perhaps even non-tail recursively.
To produce sensible results, fprof tries not to charge any function more than
once for ACC time. The instance highest up (with longest duration) in the call
stack is chosen.
Sometimes a function can unexpectedly waste a lot (some 10 ms or more depending
on host machine OS) of OWN (and ACC) time, even functions that do practically
nothing at all. The problem may be that the OS has chosen to schedule out the
Erlang runtime system process for a while, and if the OS does not support high
resolution CPU time measurements fprof will use wallclock time for its
calculations, and it will appear as if functions are randomly burning virtual
machine time.

 See Also

fprof - The File Trace Profiler, dbg, eprof

 Summary

 Types

 lcnt - tools v4.1.1

lcnt

A runtime system Lock Profiling tool.
The lcnt module is used to profile the internal ethread locks in the Erlang
Runtime System. With lcnt enabled, internal counters in the runtime system are
updated each time a lock is taken. The counters stores information about the
number of acquisition tries and the number of collisions that has occurred
during the acquisition tries. The counters also record the waiting time a lock
has caused for a blocked thread when a collision has occurred.
The data produced by the lock counters will give an estimate on how well the
runtime system will behave from a parallelizable view point for the scenarios
tested. This tool was mainly developed to help Erlang runtime developers iron
out potential and generic bottlenecks.
Locks in the emulator are named after what type of resource they protect and
where in the emulator they are initialized, those are lock 'classes'. Most of
those locks are also instantiated several times, and given unique identifiers,
to increase locking granularity. Typically an instantiated lock protects a
disjunct set of the resource, for example ets tables, processes or ports. In
other cases it protects a specific range of a resource, for example pix_lock
which protects index to process mappings, and is given a unique number within
the class. A unique lock in lcnt is referenced by a name (class) and an
identifier: {Name, Id}.
Some locks in the system are static and protects global resources, for example
bif_timers and the run_queue locks. Other locks are dynamic and not
necessarily long lived, for example process locks and ets-table locks. The
statistics data from short lived locks can be stored separately when the locks
are deleted. This behavior is by default turned off to save memory but can be
turned on via lcnt:rt_opt({copy_save, true}). The lcnt:apply/1,2,3 functions
enables this behavior during profiling.

 See Also

LCNT User's Guide

 Summary

 Types

 make - tools v4.1.1

make

A Make Utility for Erlang
The module make provides a set of functions similar to the UNIX type Make
functions.

 Emakefile

make:all/0,1 and make:files/1,2 first looks for
{emake, Emake} in options, then in the current working directory for a file
named Emakefile. If present Emake should contain elements like this:
Modules.
{Modules,Options}.
Modules is an atom or a list of atoms. It can be
	a module name, for exmaple, file1
	a module name in another directory, for exmaple, '../foo/file3'
	a set of modules specified with a wildcards, for exmaple, 'file*'
	a wildcard indicating all modules in current directory, that is: '*'
	a list of any of the above, for exmaple, ['file*','../foo/file3','File4']

Options is a list of compiler options.
Emakefile is read from top to bottom. If a module matches more than one entry,
the first match is used. For example, the following Emakefile means that
file1 should be compiled with the options [debug_info,{i,"../foo"}], while
all other files in the current directory should be compiled with only the
debug_info flag.
{'file1',[debug_info,{i,"../foo"}]}.
{'*',[debug_info]}.

 See Also

The Compiler Application

 Summary

 Functions

 tags - tools v4.1.1

tags

Generate Emacs TAGS file from Erlang source files
A TAGS file is used by Emacs to find function and variable definitions in any
source file in large projects. This module can generate a TAGS file from
Erlang source files. It recognises functions, records, and macro definitions.

 Options

The functions in this module have an optional argument Options. It
is a list which can contain the following elements:
	{outfile, NameOfTAGSFile} Create a TAGS file named NameOfTAGSFile.
	{outdir, NameOfDirectory} Create a file named TAGS in the directory
NameOfDirectory.

The default behaviour is to create a file named TAGS in the current directory.

 Examples

	tags:root([{outfile, "root.TAGS"}]).
This command will create a file named root.TAGS in the current directory.
The file will contain references to all Erlang source files in the Erlang
distribution.

	tags:files(["foo.erl", "bar.erl", "baz.erl"], [{outdir, "../projectdir"}]).
This command will create a file named TAGS placed it in the
directory ../projectdir. The file contains information about the
functions, records, and macro definitions of the three files.

 See Also

	Richard M. Stallman. GNU Emacs Manual, chapter "Editing Programs", section
"Tag Tables". Free Software Foundation, 1995.
	Anders Lindgren. The Erlang editing mode for Emacs. Ericsson, 1998.

 Summary

 Types

 tprof - tools v4.1.1

tprof

Process Tracing Profiling Tool
tprof provides convenience helpers for Erlang process profiling using
the trace BIFs.
Warning
This module aims to replace eprof and cprof into a unified API for
measuring call count, time, and allocation. It is experimental in Erlang/OTP
27.0.

It is possible to analyze the number of calls, the time spent by function, and
heap allocations by function. Profiling can be done ad-hoc
 or run in a server-aided mode for deeper
introspection of the code running in production. The server-aided mode can be
run using the default tprof server or an isolated server/0 started through
start(#{ session => atom() }).
There are three kinds of profiling supported by this module:
	call_count
	call_time
	call_memory

The default is call_count, which has the smallest performance impact
and memory footprint, but it does not support per-process
profiling. For this reason, all of the examples below uses
call_memory, which measures heap allocation, and provide a more complex
feature set to demonstrate.
Erlang terms that do not fit in a single machine word are allocated on
the process heap. For example, a function returning a tuple of two
elements needs to allocate the tuple on the process heap. The actual
consumption is three words, because the runtime systems also need an
extra word to store the tuple size.
Note
Expect a slowdown in the program execution when profiling is enabled.
For profiling convenience, measurements are accumulated for functions that are
not enabled in some trace pattern. Consider this call stack example:
top_traced_function(...)
not_traced_function()
bottom_traced_function()
Allocations that happened within not_traced_function will be added to
the allocations for top_traced_function. However, allocations that occurred
within bottom_traced_function are not included in the top_traced_function.
To only keep track of each function own allocations, it is necessary to
trace all functions.

Warning
Avoid hot code reloading for modules participating in the tracing.
Reloading a module disables tracing and discards the accumulated statistics.
The tprof results will probably be incorrect when the profiled code was
reloading during a profiling session.

 Ad-hoc profiling

Ad-hoc profiling is convenient for profiling a single function call.
For example:
1> tprof:profile(lists, seq, [1, 16], #{type => call_memory}).

****** Process <0.92.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]
ok
By default tracing is enabled for all functions in all modules. When funs
are created in the interactive shell, parts of shell code are also traced:
1> tprof:profile(fun() -> lists:seq(1, 16) end, #{type => call_memory}).

****** Process <0.95.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
erl_eval:do_apply/7 1 3 3.00 [3.61]
erl_eval:match_list/6 1 3 3.00 [3.61]
lists:reverse/1 1 4 4.00 [4.82]
erl_eval:expr_list/7 3 7 2.33 [8.43]
erl_eval:ret_expr/3 4 16 4.00 [19.28]
erl_eval:merge_bindings/4 3 18 6.00 [21.69]
lists:seq_loop/3 5 32 6.40 [38.55]
 83 [100.0]
ok
However, it is possible to limit the trace to specific functions or modules:
2> tprof:profile(fun() -> lists:seq(1, 16) end,
 #{type => call_memory, pattern => [{lists, seq_loop, '_'}]}).
****** Process <0.98.0> -- 100.00% of total ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 5 32 6.40 [100.00]
 32 [100.0]

ok
Ad-hoc profiling results can be printed in a few different ways. The following
examples use the test module defined like this:
-module(test).
-export([test_spawn/0]).
test_spawn() ->
 {Pid, MRef} = spawn_monitor(fun () -> lists:seq(1, 32) end),
 receive
 {'DOWN', MRef, process, Pid, normal} ->
 done
 end.
By default per-process statistics is shown:
1> tprof:profile(test, test_spawn, [], #{type => call_memory}).

****** Process <0.176.0> -- 23.66 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:spawn_monitor/1 1 2 2 [9.09]
erlang:spawn_opt/4 1 6 6 [27.27]
test:test_spawn/0 1 14 14 [63.64]
 22 [100.0]

****** Process <0.177.0> -- 76.34 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:apply/2 1 7 7 [9.86]
lists:seq_loop/3 9 64 7 [90.14]
 71 [100.0]
The following example prints the combined memory allocation of all
processes, sorted by the total number of allocated words in descending
order:
2> tprof:profile(test, test_spawn, [],
 #{type => call_memory, report => {total, {measurement, descending}}}).

FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 9 64 7 [68.82]
test:test_spawn/0 1 14 14 [15.05]
erlang:apply/2 1 7 7 [7.53]
erlang:spawn_opt/4 1 6 6 [6.45]
erlang:spawn_monitor/1 1 2 2 [2.15]
 93 [100.0]
The profiling data can also be collected for further inspection:
3> {done, ProfileData} = tprof:profile(fun test:test_spawn/0,
 #{type => call_memory, report => return}).
<...>
4> tprof:format(tprof:inspect(ProfileData, process, {percent, descending})).

****** Process <0.223.0> -- 23.66 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
test:test_spawn/0 1 14 14 [63.64]
erlang:spawn_opt/4 1 6 6 [27.27]
erlang:spawn_monitor/1 1 2 2 [9.09]
 22 [100.0]

****** Process <0.224.0> -- 76.34 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
lists:seq_loop/3 9 64 7 [90.14]
erlang:apply/2 1 7 7 [9.86]
 71 [100.0]
Which processes that are profiled depends on the profiling type.
	call_count (default) counts calls in all processes.

	call_time and call_memory limits the profiling to the processes
spawned from the user-provided function (using the set_on_spawn
option for trace:process/4).

call_time and call_memory can be restricted to profile a single process:
2> tprof:profile(test, test_spawn, [],
 #{type => call_memory, set_on_spawn => false}).

****** Process <0.183.0> -- 100.00 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erlang:spawn_monitor/1 1 2 2 [9.09]
erlang:spawn_opt/4 1 6 6 [27.27]
test:test_spawn/0 1 14 14 [63.64]

Erlang programs can perform expensive operations in other processes
than the original one. You can include multiple, new, or even all
processes in the trace when measuring time or memory:
7> pg:start_link().
{ok,<0.252.0>}
8> tprof:profile(fun() -> pg:join(group, self()) end,
 #{type => call_memory, rootset => [pg]}).
****** Process <0.252.0> -- 52.86 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
pg:leave_local_update_ets/5 1 2 2 [1.80]
gen:reply/2 1 3 3 [2.70]
erlang:monitor/2 1 3 3 [2.70]
gen_server:try_handle_call/4 1 3 3 [2.70]
gen_server:try_dispatch/4 1 3 3 [2.70]
maps:iterator/1 2 4 2 [3.60]
maps:take/2 1 6 6 [5.41]
pg:join_local_update_ets/5 1 8 8 [7.21]
pg:handle_info/2 1 8 8 [7.21]
pg:handle_call/3 1 9 9 [8.11]
gen_server:loop/7 2 9 4 [8.11]
ets:lookup/2 2 10 5 [9.01]
pg:join_local/3 1 11 11 [9.91]
pg:notify_group/5 2 16 8 [14.41]
erlang:setelement/3 2 16 8 [14.41]
 111 [100.0]

****** Process <0.255.0> -- 47.14 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
erl_eval:match_list/6 1 3 3 [3.03]
erlang:monitor/2 1 3 3 [3.03]
lists:reverse/1 2 4 2 [4.04]
pg:join/3 1 4 4 [4.04]
erl_eval:add_bindings/2 1 5 5 [5.05]
erl_eval:do_apply/7 2 6 3 [6.06]
gen:call/4 1 8 8 [8.08]
erl_eval:expr_list/7 4 10 2 [10.10]
gen:do_call/4 1 16 16 [16.16]
erl_eval:ret_expr/3 4 16 4 [16.16]
erl_eval:merge_bindings/4 3 24 8 [24.24]
 99 [100.0]
By default, there is no limit for the profiling time. For ad-hoc
profiling, it is possible to configure a time limit. If the profiled
function does not return before that time expires, the process is
terminated with reason kill. Any unlinked children processes started
by the user-supplied function are kept; it is the responsibility of
the developer to take care of such processes.
9> tprof:profile(timer, sleep, [100000], #{timeout => 1000}).
By default, only one ad-hoc or server-aided profiling session is
allowed at any point in time. It is possible to force multiple ad-hoc
sessions concurrently, but it is the responsibility of the developer
to ensure that trace patterns do not overlap:
1> tprof:profile(fun() -> lists:seq(1, 32) end,
 #{registered => false, pattern => [{lists, '_', '_'}]}).

 Server-aided profiling

Server-aided profiling can be done on a system that is up and
running. To do that, start the tprof server, and then add trace
patterns and processes to trace while the system handles actual
traffic. Data can extracted, inspected, and printed at any time. The
following example traces activity of all processes supervised by
the Kernel supervisor:
1> tprof:start(#{type => call_memory}).
{ok,<0.200.0>}
2> tprof:enable_trace({all_children, kernel_sup}).
34
3> tprof:set_pattern('_', '_' , '_').
16728
4> Sample = tprof:collect().
{call_memory,
 [{gen_server,try_dispatch,4,[{<0.154.0>,2,6}]},
 {erlang,iolist_to_iovec,1,[{<0.161.0>,1,8}]},
<...>
5 > tprof:format(tprof:inspect(Sample)).

****** Process <0.154.0> -- 14.21 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
maps:iterator/1 2 4 2 [15.38]
gen_server:try_dispatch/4 2 6 3 [23.08]
net_kernel:handle_info/2 2 16 8 [61.54]
 26 [100.0]

****** Process <0.161.0> -- 85.79 % of total allocations ***
FUNCTION CALLS WORDS PER CALL [%]
disk_log:handle/2 2 2 1 [1.27]
disk_log_1:maybe_start_timer/1 1 3 3 [1.91]
disk_log_1:mf_write_cache/1 1 3 3 [1.91]
<...>

It is possible to profile the entire running system, and then examine individual
processes:
1> tprof:start(#{type => call_memory}).
2> tprof:enable_trace(all), tprof:set_pattern('_', '_' , '_').
9041
3> timer:sleep(10000), tprof:disable_trace(all), Sample = tprof:collect().
{call_memory,
 [{user_drv,server,3,[{<0.64.0>,12,136}]},
 {user_drv,contains_ctrl_g_or_ctrl_c,1,[{<0.64.0>,80,10}]},
<...>
4> Inspected = tprof:inspect(Sample, process, measurement), Shell = maps:get(self(), Inspected).
{call_memory, 2743,
 [{shell,{enc,0},1,2,2,0.07291286912139992},
<...>
5> tprof:format(Shell).

FUNCTION CALLS WORDS PER CALL [%]
<...>
erl_lint:start/2 2 300 150 [10.94]
shell:used_records/1 114 342 3 [12.47]

 Summary

 Types

 xref - tools v4.1.1

xref

A Cross Reference Tool for analyzing dependencies between functions, modules,
applications, and releases.
Calls between functions are either local calls such as f(),
or external calls such as mod:f().
Module data, which are extracted from BEAM files,
include local functions, exported functions, local calls, and external
calls. By default, calls to built-in functions (BIF) are ignored, but
if the option builtins, accepted by some of this module's functions,
is set to true, calls to BIFs are included as well. It is the
analyzing OTP version that decides what functions are BIFs.
Functional objects are assumed to be called where they are created
(and nowhere else).
Unresolved calls are calls to apply or
spawn with variable module, variable function, or variable
arguments. Examples are M:F(a), apply(M, f, [a]), and
spawn(m, f(), Args). Unresolved calls are represented
by calls where variable modules have been replaced with the atom
'$M_EXPR', variable functions have been replaced with the atom
'$F_EXPR', and variable number of arguments have been replaced with
the number -1. The above mentioned examples are represented by calls
to '$M_EXPR':'$F_EXPR'/1, '$M_EXPR':f/1, and m:'$F_EXPR'/-1. The
unresolved calls are a subset of the external calls.
Warning
Unresolved calls make module data incomplete, which implies that the results
of analyses may be invalid.

Applications are collections of modules. The BEAM files for the
modules are located in the ebin subdirectory of the application
directory. The name of the application directory determines the name
and version of the application.
Releases are collections of applications located in the lib subdirectory of
the release directory. There is more to read about applications and releases in
the Design Principles book.
Xref servers are identified by names, supplied when
creating new servers. Each Xref server holds a set of releases, a set
of applications, and a set of modules with module data. Xref servers
are independent of each other, and all analyses are evaluated in the
context of one single Xref server (exceptions are the functions
m/1 and d/1 which do not use servers at
all).
The mode of an Xref server determines what module data are
extracted from BEAM files as modules are added to the server. BEAM
files compiled with the option debug_info contain "debug information", which is an abstract representation of the
code.
	In functions mode, which is the default mode, function calls
and line numbers are extracted from debug information.

	In modules mode, debug information is ignored if present, but
dependencies between modules are extracted from other parts of the
BEAM files. The modules mode is significantly less time and space
consuming than the functions mode, but the analyses that can be
done are limited.

An analyzed module is a module that has been added to an
Xref server together with its module data. A library module is a module located in some directory mentioned in the library path. A library module is said to be used if some of its exported
functions are used by some analyzed module. An unknown module is a module that is neither an analyzed module nor a library
module, but whose exported functions are used by some analyzed module.
An unknown function is a used function that is
neither local or exported by any analyzed module nor exported by any
library module. An undefined function is an
externally used function that is not exported by any analyzed module
or library module. With this notion, a local function can be an
undefined function, namely if it is externally used from some
module. All unknown functions are also undefined functions; there is a
figure in the User's Guide that illustrates
this relationship.
The module attribute tag deprecated can be used to inform
Xref about deprecated functions and optionally when
functions are planned to be removed. A few examples show the idea:
	-deprecated({f,1}). - The exported function f/1 is deprecated.
Nothing is said whether f/1 will be removed or not.

	-deprecated({f,1,"Use g/1 instead"}). - As above but with a descriptive
string. The string is currently unused by xref but other tools can make use
of it.

	-deprecated({f,'_'}). - All exported functions f/0, f/1, and so on
are deprecated.

	-deprecated(module). - All exported functions in the module are
deprecated. Equivalent to -deprecated({'_','_'})..

	-deprecated([{g,1,next_version}]). - The function g/1 is deprecated
and will be removed in next version.

	-deprecated([{g,2,next_major_release}]). - The function g/2 is
deprecated and will be removed in next major release.

	-deprecated([{g,3,eventually}]). - The function g/3 is deprecated
and will eventually be removed.

	-deprecated({'_','_',eventually}). - All exported functions in the
module are deprecated and will eventually be removed.

Before any analysis can take place, module data must be set up. For instance,
the cross reference and the unknown functions are computed when all module data
are known. The functions that need complete data
(analyze/2,3, q/2,3, variables/1,2
take care of setting up data automatically. Module data need to be set up
(again) after calls to any of the add, replace, remove,
set_library_path/2,3, or
update/1,2 functions.
The result of setting up module data is the Call Graph. A
(directed) graph consists of a set of vertices and a set of (directed) edges.
The edges represent calls (From, To) between functions, modules,
applications, or releases. From is said to call To, and To is said to be used by
From. The vertices of the Call Graph are the functions of all module data: local
and exported functions of analyzed modules; used BIFs; used exported functions
of library modules; and unknown functions. The functions module_info/0,1 added
by the compiler are included among the exported functions, but only when called
from some module. The edges are the function calls of all module data. A
consequence of the edges being a set is that there is only one edge if a
function is locally or externally used several times on one and the same line of
code.
The Call Graph is represented by Erlang terms (the sets
are lists), which is suitable for many analyses. But for analyses that look at
chains of calls, a list representation is much too slow. Instead the
representation offered by the digraph module is used. The translation of the
list representation of the Call Graph - or a subgraph thereof - to the digraph
representation does not come for free, so the language used for expressing
queries to be described below has a special operator for this task and a
possibility to save the digraph representation for subsequent analyses.
In addition to the Call Graph there is a graph called the Inter Call Graph. This is a graph of calls (From, To) such that there is a
chain of calls from From to To in the Call Graph, and every From and To is an
exported function or an unused local function. The vertices are the same as for
the Call Graph.
Calls between modules, applications and releases are also directed graphs. The
types of the vertices and edges of these graphs are (ranging from
the most special to the most general): Fun for functions; Mod for modules;
App for applications; and Rel for releases. The following paragraphs will
describe the different constructs of the language used for selecting and
analyzing parts of the graphs, beginning with the constants:
	Expression ::= Constants
	Constants ::= Consts | Consts : Type | RegExpr

	Consts ::= Constant | [Constant, ...] | {Constant, ...}

	Constant ::= Call | Const

	Call ::= FunSpec -> FunSpec | {MFA, MFA} | AtomConst -> AtomConst |
{AtomConst, AtomConst}

	Const ::= AtomConst | FunSpec | MFA

	AtomConst ::= Application | Module | Release

	FunSpec ::= Module : Function / Arity
	MFA ::= {Module, Function, Arity}
	RegExpr ::= RegString : Type | RegFunc | RegFunc : Type

	RegFunc ::= RegModule : RegFunction / RegArity
	RegModule ::= RegAtom
	RegFunction ::= RegAtom
	RegArity ::= RegString | Number | _ | -1

	RegAtom ::= RegString | Atom | _

	RegString ::= - a regular expression, as described in the re module,
enclosed in double quotes -
	Type ::= Fun | Mod | App | Rel

	Function ::= Atom
	Application ::= Atom
	Module ::= Atom
	Release ::= Atom
	Arity ::= Number | -1

	Atom ::= - same as Erlang atoms -
	Number ::= - same as non-negative Erlang integers -

Examples of constants are: kernel, kernel->stdlib, [kernel, sasl],
[pg -> mnesia, {tv, mnesia}] : Mod. It is an error if an instance of Const
does not match any vertex of any graph. If there are more than one vertex
matching an untyped instance of AtomConst, then the one of the most general
type is chosen. A list of constants is interpreted as a set of constants, all of
the same type. A tuple of constants constitute a chain of calls (which may, but
does not have to, correspond to an actual chain of calls of some graph).
Assigning a type to a list or tuple of Constant is equivalent to assigning the
type to each Constant.
Regular expressions are used as a means to select some of the
vertices of a graph. A RegExpr consisting of a RegString and a type - an
example is "xref_.*" : Mod - is interpreted as those modules (or applications
or releases, depending on the type) that match the expression. Similarly, a
RegFunc is interpreted as those vertices of the Call Graph that match the
expression. An example is "xref_.*":"add_.*"/"(2|3)", which matches all add
functions of arity two or three of any of the xref modules. Another example, one
that matches all functions of arity 10 or more: _:_/"[1-9].+". Here _ is an
abbreviation for ".*", that is, the regular expression that matches anything.
The syntax of variables is simple:
	Expression ::= Variable
	Variable ::= - same as Erlang variables -

There are two kinds of variables:
	Predefined variables - hold module data, and
cannot be assigned to but only used in queries.

	User variables - can be assigned to, and are
typically used for temporary results while evaluating a query, and
for keeping results of queries for use in subsequent queries.

The predefined variables are (variables marked with (*) are available
in functions mode only):
	E - Call Graph Edges (*).

	V - Call Graph Vertices (*).

	M - Modules. All modules: analyzed modules, used library modules, and
unknown modules.

	A - Applications.

	R - Releases.

	ME - Module Edges. All module calls.

	AE - Application Edges. All application calls.

	RE - Release Edges. All release calls.

	L - Local Functions (*). All local functions of analyzed modules.

	X - Exported Functions. All exported functions of analyzed modules and
all used exported functions of library modules.

	F - Functions (*).

	B - Used BIFs. B is empty if builtins is false for all analyzed
modules.

	U - Unknown Functions.

	UU - Unused Functions (*). All local and exported functions of analyzed
modules that have not been used.

	XU - Externally Used Functions. Functions of all modules - including
local functions - that have been used in some external call.

	LU - Locally Used Functions (*). Functions of all modules that have
been used in some local call.

	OL - Functions with an attribute tag on_load (*).

	LC - Local Calls (*).

	XC - External Calls (*).

	AM - Analyzed Modules.

	UM - Unknown Modules.

	LM - Used Library Modules.

	UC - Unresolved Calls. Empty in modules mode.

	EE - Inter Call Graph Edges (*).

	DF - Deprecated Functions. All deprecated exported functions and all
used deprecated BIFs.

	DF_1 - Deprecated Functions. All deprecated functions to be removed in
next version.

	DF_2 - Deprecated Functions. All deprecated functions to be removed in
next version or next major release.

	DF_3 - Deprecated Functions. All deprecated functions to be removed in
next version, next major release, or later.

These are a few facts about the predefined variables (the
set operators + (union) and - (difference) as well as the cast operator
(Type) are described below):
	F is equal to L + X.
	V is equal to X + L + B + U, where X, L, B and U are pairwise
disjoint (that is, have no elements in common).
	UU is equal to V - (XU + LU), where LU and XU may have elements in
common. Put in another way:
	V is equal to UU + XU + LU.
	OL is a subset of F.
	E is equal to LC + XC. Note that LC and XC may have elements in
common, namely if some function is locally and externally used from one and
the same function.
	U is a subset of XU.
	B is a subset of XU.
	LU is equal to range LC.
	XU is equal to range XC.
	LU is a subset of F.
	UU is a subset of F.
	range UC is a subset of U.
	M is equal to AM + LM + UM, where AM, LM and UM are pairwise
disjoint.
	ME is equal to (Mod) E.
	AE is equal to (App) E.
	RE is equal to (Rel) E.
	(Mod) V is a subset of M. Equality holds if all analyzed modules have some
local, exported, or unknown function.
	(App) M is a subset of A. Equality holds if all applications have some
module.
	(Rel) A is a subset of R. Equality holds if all releases have some
application.
	DF_1 is a subset of DF_2.
	DF_2 is a subset of DF_3.
	DF_3 is a subset of DF.
	DF is a subset of X + B.

An important notion is that of conversion of expressions. The
syntax of a cast expression is:
	Expression ::= (Type) Expression

The interpretation of the cast operator depends on the named type Type, the
type of Expression, and the structure of the elements of the interpretation of
Expression. If the named type is equal to the expression type, no conversion
is done. Otherwise, the conversion is done one step at a time; (Fun) (App) RE,
for instance, is equivalent to (Fun) (Mod) (App) RE. Now assume that the
interpretation of Expression is a set of constants (functions, modules,
applications or releases). If the named type is more general than the expression
type, say Mod and Fun respectively, then the interpretation of the cast
expression is the set of modules that have at least one of their functions
mentioned in the interpretation of the expression. If the named type is more
special than the expression type, say Fun and Mod, then the interpretation
is the set of all the functions of the modules (in modules mode, the
conversion is partial since the local functions are not known). The conversions
to and from applications and releases work analogously. For instance,
(App) "xref_.*" : Mod returns all applications containing at least one module
such that xref_ is a prefix of the module name.
Now assume that the interpretation of Expression is a set of calls. If the
named type is more general than the expression type, say Mod and Fun
respectively, then the interpretation of the cast expression is the set of calls
(M1, M2) such that the interpretation of the expression contains a call from
some function of M1 to some function of M2. If the named type is more special
than the expression type, say Fun and Mod, then the interpretation is the
set of all function calls (F1, F2) such that the interpretation of the
expression contains a call (M1, M2) and F1 is a function of M1 and F2 is a
function of M2 (in modules mode, there are no functions calls, so a cast to
Fun always yields an empty set). Again, the conversions to and from
applications and releases work analogously.
The interpretation of constants and variables are sets, and those sets can be
used as the basis for forming new sets by the application of set operators. The syntax:
	Expression ::= Expression BinarySetOp Expression
	BinarySetOp ::= + | * | -

+, * and - are interpreted as union, intersection and difference
respectively: the union of two sets contains the elements of both sets; the
intersection of two sets contains the elements common to both sets; and the
difference of two sets contains the elements of the first set that are not
members of the second set. The elements of the two sets must be of the same
structure; for instance, a function call cannot be combined with a function. But
if a cast operator can make the elements compatible, then the more general
elements are converted to the less general element type. For instance, M + F
is equivalent to (Fun) M + F, and E - AE is equivalent to E - (Fun) AE.
One more example: X * xref : Mod is interpreted as the set of functions
exported by the module xref; xref : Mod is converted to the more special
type of X (Fun, that is) yielding all functions of xref, and the
intersection with X (all functions exported by analyzed modules and library
modules) is interpreted as those functions that are exported by some module
and functions of xref.
There are also unary set operators:
	Expression ::= UnarySetOp Expression
	UnarySetOp ::= domain | range | strict

Recall that a call is a pair (From, To). domain applied to a set of calls is
interpreted as the set of all vertices From, and range as the set of all
vertices To. The interpretation of the strict operator is the operand with all
calls on the form (A, A) removed.
The interpretation of the restriction operators is a subset
of the first operand, a set of calls. The second operand, a set of vertices, is
converted to the type of the first operand. The syntax of the restriction
operators:
	Expression ::= Expression RestrOp Expression
	RestrOp ::= |
	RestrOp ::= ||
	RestrOp ::= |||

The interpretation in some detail for the three operators:
	| - The subset of calls from any of the vertices.

	|| - The subset of calls to any of the vertices.

	||| - The subset of calls to and from any of the vertices. For all sets
of calls CS and all sets of vertices VS, CS ||| VS is equivalent to
CS | VS * CS || VS.

 Two functions (modules, applications, releases) belong
to the same strongly connected component if they call each other (in)directly.
The interpretation of the components operator is the set of strongly connected
components of a set of calls. The condensation of a set of calls is a new set
of calls between the strongly connected components such that there is an edge
between two components if there is some constant of the first component that
calls some constant of the second component.
The interpretation of the of operator is a chain of calls of the second
operand (a set of calls) that passes throw all of the vertices of the first
operand (a tuple of constants), in the given order. The second operand is
converted to the type of the first operand. For instance, the of operator can
be used for finding out whether a function calls another function indirectly,
and the chain of calls demonstrates how. The syntax of the graph analyzing
operators:
	Expression ::= Expression BinaryGraphOp Expression
	Expression ::= UnaryGraphOp Expression
	UnaryGraphOp ::= components | condensation

	BinaryGraphOp ::= of

As was mentioned before, the graph analyses operate on the digraph
representation of graphs. By default, the digraph representation is created
when needed (and deleted when no longer used), but it can also be created
explicitly by use of the closure operator:
	Expression ::= ClosureOp Expression
	ClosureOp ::= closure

The interpretation of the closure operator is the transitive closure of the
operand.
The restriction operators are defined for closures as well;
closure E | xref : Mod is interpreted as the direct or indirect function calls
from the xref module, while the interpretation of E | xref : Mod is the set
of direct calls from xref. If some graph is to be used in several graph
analyses, it saves time to assign the digraph representation of the graph to a
user variable, and then make sure that every graph analysis operates on that
variable instead of the list representation of the graph.
The lines where functions are defined (more precisely: where the first clause
begins) and the lines where functions are used are available in functions
mode. The line numbers refer to the files where the functions are defined. This
holds also for files included with the -include and -include_lib directives,
which may result in functions defined apparently in the same line. The line
operators are used for assigning line numbers to functions and for assigning
sets of line numbers to function calls. The syntax is similar to the one of the
cast operator:
	Expression ::= (LineOp) Expression
	Expression ::= (XLineOp) Expression
	LineOp ::= Lin | ELin | LLin | XLin

	XLineOp ::= XXL

The interpretation of the Lin operator applied to a set of functions assigns
to each function the line number where the function is defined. Unknown
functions and functions of library modules are assigned the number 0.
The interpretation of some LineOp operator applied to a set of function calls
assigns to each call the set of line numbers where the first function calls the
second function. Not all calls are assigned line numbers by all operators:
	the Lin operator is defined for Call Graph Edges;
	the LLin operator is defined for Local Calls.
	the XLin operator is defined for External Calls.
	the ELin operator is defined for Inter Call Graph Edges.

The Lin (LLin, XLin) operator assigns the lines where calls (local calls,
external calls) are made. The ELin operator assigns to each call (From, To),
for which it is defined, every line L such that there is a chain of calls from
From to To beginning with a call on line L.
The XXL operator is defined for the interpretation of any of the LineOp
operators applied to a set of function calls. The result is that of replacing
the function call with a line numbered function call, that is, each of the two
functions of the call is replaced by a pair of the function and the line where
the function is defined. The effect of the XXL operator can be undone by the
LineOp operators. For instance, (Lin) (XXL) (Lin) E is equivalent to
(Lin) E.
The +, -, *, and # operators are defined for line number expressions,
provided the operands are compatible. The LineOp operators are also defined for
modules, applications, and releases; the operand is implicitly converted to
functions. Similarly, the cast operator is defined for the interpretation of the
LineOp operators.
The interpretation of the counting operator is the number of
elements of a set. The operator is undefined for closures. The +, - and *
operators are interpreted as the obvious arithmetical operators when applied to
numbers. The syntax of the counting operator:
	Expression ::= CountOp Expression
	CountOp ::= #

All binary operators are left associative; for instance, A | B || C is
equivalent to (A | B) || C. The following is a list of all operators, in
increasing order of precedence:
	+, -
	*
	#
	|, ||, |||
	of
	(Type)
	closure, components, condensation, domain, range, strict

Parentheses are used for grouping, either to make an expression more readable or
to override the default precedence of operators:
	Expression ::= (Expression)

A query is a non-empty sequence of statements. A statement is
either an assignment of a user variable or an expression. The value of an
assignment is the value of the right hand side expression. It makes no sense to
put a plain expression anywhere else but last in queries. The syntax of queries
is summarized by these productions:
	Query ::= Statement, ...
	Statement ::= Assignment | Expression

	Assignment ::= Variable := Expression | Variable = Expression

A variable cannot be assigned a new value unless first removed. Variables
assigned to by the = operator are removed at the end of the query, while
variables assigned to by the := operator can only be removed by calls to
forget. There are no user variables when module data need to be set up again;
if any of the functions that make it necessary to set up module data again is
called, all user variables are forgotten.

 See Also

beam_lib, digraph, digraph_utils, re,
User's Guide for Xref

 Summary

 Types

 OEBPS/