

 runtime_tools

 v2.1.1

 [image: Logo]

 Table of contents

 	Runtime tools Application

 	Runtime_Tools Release Notes

 	User's Guides

 	LTTng and Erlang/OTP

 	DTrace and Erlang/OTP

 	SystemTap and Erlang/OTP

 	

 	Modules

 	dbg

 	dyntrace

 	instrument

 	msacc

 	scheduler

 	system_information

Runtime tools Application

 Description

This chapter describes the Runtime_Tools application in OTP, which provides low
footprint tracing/debugging tools suitable for inclusion in a production system.

 Configuration

There are currently no configuration parameters available for this application.

 SEE ALSO

application(3)

Runtime_Tools Release Notes

This document describes the changes made to the Runtime_Tools application.

 Runtime_Tools 2.1.1

 Fixed Bugs and Malfunctions

	Fixed a bug where dbg sessions on remote nodes were terminated prematurely.
Own Id: OTP-19188 Aux Id: PR-8692

 Runtime_Tools 2.1

 Improvements and New Features

	The instrument module can now track allocations on a per-process or per-port basis.
Own Id: OTP-18577 Aux Id: PR-7236

	The new function proc_lib:set_label/1 can be used to add a descriptive term to any process that does not have a registered name. The name will be shown by tools such as c:i/0, observer, and it will be included in crash reports produced by processes using gen_server, gen_statem, gen_event, and gen_fsm.
The label for a process can be retrieved by calling proc_lib:get_label/1.
Note that those functions work on any process, not only processes that use proc_lib.
Example:
1> self().
<0.90.0>
2> proc_lib:set_label(my_label).
ok
3> i().
 .
 .
 .
<0.90.0> erlang:apply/2 2586 75011 0
my_label c:pinfo/2 51
4> proc_lib:get_label(self()).
my_label
Own Id: OTP-18789 Aux Id: PR-7720, PR-8003

	Type specs had been added to all dbg functions.
Own Id: OTP-18859 Aux Id: PR-7782

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	dbg have been updated to use trace sessions.
dbg:session_create/1, dbg:session/2, and dbg:session_destroy/1 have been added to work sessions. See the documentation for details.
Own Id: OTP-19081 Aux Id: PR-8363

 Runtime_Tools 2.0.1

 Fixed Bugs and Malfunctions

	Fixed issue with fetching port information for observer could crash if port
had died.
Own Id: OTP-18868 Aux Id: GH-7735

	Fixed some benign compile warnings on Windows.
Own Id: OTP-18895

 Runtime_Tools 2.0

 Fixed Bugs and Malfunctions

	Fixed the type specification for instrument:carriers/0,1
Own Id: OTP-18499 Aux Id: PR-6946

 Improvements and New Features

	Add dbg:tracer(file, Filename) as a convenient way to trace to a file in
clean text.
Own Id: OTP-18211 Aux Id: PR-6143

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	The instrument module has been moved from tools to runtime_tools.
Own Id: OTP-18487 Aux Id: PR-6829

	Removed the experimental erts_alloc_config module. It no longer produced
good configurations and cannot be fixed in a reasonably backwards compatible
manner. It has since OTP 25 been deprecated and scheduled for removal in
OTP 26.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18549 Aux Id: PR-7105

 Runtime_Tools 1.19

 Fixed Bugs and Malfunctions

	Reading port socket options on macOS and Windows "skips" invalid options.
Own Id: OTP-18012 Aux Id: #5798

 Improvements and New Features

	dbg:stop/0 now behaves like dbg:stop_clear/0, clearing all global trace
patterns for all functions.
Own Id: OTP-17909 Aux Id: ERIERL-760

	erts_alloc_config has been scheduled for removal in OTP 26. It has not
produced good configurations for a very long time, and unfortunately it cannot
be fixed in a backwards compatible manner.
Own Id: OTP-17939

 Runtime_Tools 1.18

 Fixed Bugs and Malfunctions

	Fixed bug in scheduler:utilization(Seconds) that would leave the
scheduler_wall_time system flag incorrectly enabled.
Own Id: OTP-17800 Aux Id: PR-5425

 Improvements and New Features

	Add scheduler:get_sample/0 and get_sample_all/0. Also clarify scheduler
module documentation about how it depends on system flag
scheduler_wall_time.
Own Id: OTP-17830 Aux Id: GH-5425, PR-5444

 Runtime_Tools 1.17

 Improvements and New Features

	Observer now has a sectiion for new socket.
Own Id: OTP-17346

	The dbg docs have been expanded to include the meaning of all the function
name acronyms.
Own Id: OTP-17572 Aux Id: PR-5117

 Runtime_Tools 1.16.2

 Improvements and New Features

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

 Runtime_Tools 1.16.1

 Fixed Bugs and Malfunctions

	The function dbg:n/1 used a local fun to set up a tracer on a remote node.
This works fine as long as the remote node is running exactly the same version
of Erlang/OTP but does not work at all otherwise. This is fixed by exporting
the relevant function and by calling this function on the remote node to set
up remote tracing.
Own Id: OTP-16930 Aux Id: ERL-1371, GH-4396

 Runtime_Tools 1.16

 Improvements and New Features

	Clarify documentation of module 'scheduler'.
Own Id: OTP-17208 Aux Id: GH-4502, PR-4532

 Runtime_Tools 1.15.1

 Fixed Bugs and Malfunctions

	Fixed a crash in appmon_info triggered by trying to read port info from a
port that was in the process of terminating.
appmon_info is used by observer to get information from the observed node.
Own Id: OTP-16787 Aux Id: PR-2673

 Runtime_Tools 1.15

 Improvements and New Features

	Improved the presentation of allocations and carriers in the instrument
module.
Own Id: OTP-16327

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

 Runtime_Tools 1.14.0.1

 Fixed Bugs and Malfunctions

	The function dbg:n/1 used a local fun to set up a tracer on a remote node.
This works fine as long as the remote node is running exactly the same version
of Erlang/OTP but does not work at all otherwise. This is fixed by exporting
the relevant function and by calling this function on the remote node to set
up remote tracing.
Own Id: OTP-16930 Aux Id: ERL-1371, GH-4396

 Runtime_Tools 1.14

 Improvements and New Features

	Fix dbg:stop_clear/0 to also clear trace events (send and 'receive').
Own Id: OTP-16044

 Runtime_Tools 1.13.3

 Improvements and New Features

	Minor updates to build system necessary due to move of configuration of
crypto application.
Own Id: OTP-15262 Aux Id: OTP-15129

 Runtime_Tools 1.13.2.1

 Fixed Bugs and Malfunctions

	The function dbg:n/1 used a local fun to set up a tracer on a remote node.
This works fine as long as the remote node is running exactly the same version
of Erlang/OTP but does not work at all otherwise. This is fixed by exporting
the relevant function and by calling this function on the remote node to set
up remote tracing.
Own Id: OTP-16930 Aux Id: ERL-1371, GH-4396

 Runtime_Tools 1.13.2

 Improvements and New Features

	Update of systemtap trace example scripts.
Own Id: OTP-15670

 Runtime_Tools 1.13.1

 Improvements and New Features

	Optimize observer by using new system_info(ets_count) instead of more
expensive length(ets:all()).
Own Id: OTP-15163 Aux Id: PR-1844

 Runtime_Tools 1.13

 Improvements and New Features

	New utility module scheduler which makes it easier to measure scheduler
utilization.
Own Id: OTP-14904

 Runtime_Tools 1.12.5

 Fixed Bugs and Malfunctions

	system_information:to_file/1 will now use slightly less memory.
Own Id: OTP-14816

 Runtime_Tools 1.12.4

 Improvements and New Features

	New family of erts_alloc strategies: Age Order First Fit. Similar to
"address order", but instead the oldest possible carrier is always chosen for
allocation.
Own Id: OTP-14917 Aux Id: ERIERL-88

 Runtime_Tools 1.12.3

 Fixed Bugs and Malfunctions

	Removed all old unused files in the documentation.
Own Id: OTP-14475 Aux Id: ERL-409, PR-1493

 Runtime_Tools 1.12.2

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

 Runtime_Tools 1.12.1

 Fixed Bugs and Malfunctions

	A faulty encoding comment was added when saving trace patterns to file. This
is now corrected.
Own Id: OTP-14479

 Runtime_Tools 1.12

 Fixed Bugs and Malfunctions

	Add compile option -compile(no_native) in modules with on_load directive
which is not yet supported by HiPE.
Own Id: OTP-14316 Aux Id: PR-1390

 Improvements and New Features

	Miscellaneous updates due to atoms containing arbitrary Unicode characters.
Own Id: OTP-14285

	Sockets can now be bound to device (SO_BINDTODEVICE) on platforms where it is
supported.
This has been implemented e.g to support VRF-Lite under Linux; see
VRF , and
GitHub pull request #1326.
Own Id: OTP-14357 Aux Id: PR-1326

 Runtime_Tools 1.11.1

 Fixed Bugs and Malfunctions

	etop erroneously reported the average scheduler utilization since the tool was
first started instead of the scheduler utilization since last update. This is
now corrected.
Own Id: OTP-14090 Aux Id: seq13232

 Runtime_Tools 1.11

 Improvements and New Features

	Add option queue_size to ttb:tracer/2. This sets the maximum queue size for
the IP trace driver which is used when tracing to shell and/or {local,File}.
The default value for queue_size is specified by dbg, and it is now
changed from 50 to 200.
Own Id: OTP-13829 Aux Id: seq13171

	The port information page is updated to show more information per port.
Own Id: OTP-13948 Aux Id: ERL-272

 Runtime_Tools 1.10.1

 Improvements and New Features

	Correct some minor documentation issues.
Own Id: OTP-13891

 Runtime_Tools 1.10

 Fixed Bugs and Malfunctions

	Fix bug in dbg:trace_port/2 that could cause the trace ip driver to produce
faulty error reports "...(re)selected before stop_select was called for driver
trace_ip_drv".
Own Id: OTP-13576 Aux Id: ERL-119

 Improvements and New Features

	Add microstate accounting
Microstate accounting is a way to track which state the different threads
within ERTS are in. The main usage area is to pin point performance
bottlenecks by checking which states the threads are in and then from there
figuring out why and where to optimize.
Since checking whether microstate accounting is on or off is relatively
expensive only a few of the states are enabled by default and more states can
be enabled through configure.
There is a convenience module called msacc that has been added to
runtime_tools that can assist in gathering and interpreting the data from
Microstate accounting.
For more information see
erlang:statistics(microstateaccounting,)
and the msacc module in runtime_tools.
Own Id: OTP-12345

	Update observer GUI to support tracing on ports, and to set matchspecs for
send/receive. This required some minor bugfixes in runtime_tools/dbg.
Own Id: OTP-13481

	Update dbg and ttb to work with a tracer module as tracer and tracing on
ports.
Own Id: OTP-13500

	Updated dbg to accept the new trace options monotonic_timestamp and
strict_monotonic_timestamp.
Own Id: OTP-13502

	Introduce LTTng tracing via Erlang tracing.
For LTTng to be enabled OTP needs to be built with configure option
--with-dynamic-trace=lttng.
The dynamic trace module dyntrace is now capable to be used as a LTTng sink
for Erlang tracing. For a list of all tracepoints, see
Runtime Tools User's Guide .
This feature also introduces an incompatible change in trace tags. The trace
tags gc_start and gc_end has been split into gc_minor_start,
gc_minor_end and gc_major_start, gc_major_end.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13532

 Runtime_Tools 1.9.3

 Improvements and New Features

	dbg:trace_client() now uses a read buffer to speed up reading of trace
files.
Own Id: OTP-13279

 Runtime_Tools 1.9.2

 Improvements and New Features

	Clarified dbg:stop documentation
Own Id: OTP-13078

 Runtime_Tools 1.9.1

 Fixed Bugs and Malfunctions

	The trace_file_drv did not handle EINTR correct which caused it to fail
when the runtime system received a signal.
Own Id: OTP-12890 Aux Id: seq12885

 Runtime_Tools 1.9

 Improvements and New Features

	Change license text from Erlang Public License to Apache Public License v2
Own Id: OTP-12845

 Runtime_Tools 1.8.16

 Fixed Bugs and Malfunctions

	The trace process started by dbg would not always terminate when
dbg:stop/0 was called.
Own Id: OTP-12517

 Runtime_Tools 1.8.15

 Fixed Bugs and Malfunctions

	Add nif_version to erlang:system_info/1 in order to get the NIF API
version of the runtime system in a way similar to driver_version.
Own Id: OTP-12298

 Runtime_Tools 1.8.14

 Fixed Bugs and Malfunctions

	The documentation for the return value of dbg:{stop,stop_clear} functions
are now correct (Thanks to Luca Favatella)
Own Id: OTP-11603

	Fix DTrace build on Illumos. (Thanks to Ryan Zezeski.)
Own Id: OTP-11622

	Do not turn off scheduler_wall_time, as it can interfere with other
applications usage.
Own Id: OTP-11693 Aux Id: seq12528

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Improvements and New Features

	Allow install path to have unicode characters.
Own Id: OTP-10877

	The erts_alloc_config tool has been updated to produce configurations that
better fit todays SMP support in the VM.
Own Id: OTP-11662

	The app-file key
runtime_dependencies has been
introduced.
Runtime dependencies have been added to all app-files in OTP. Note that these
may not be completely correct during OTP 17, but this is actively being worked
on.
The function system_information:sanity_check/0 will verify all declared
runtime dependencies in the system when called.
Own Id: OTP-11773

 Runtime_Tools 1.8.13

 Fixed Bugs and Malfunctions

	Observer did not produce correct result when ERTS internal memory allocators
had been disabled.
Own Id: OTP-11520

 Runtime_Tools 1.8.12

 Fixed Bugs and Malfunctions

	The process trace flag 'silent' is now allowed in call to dbg:p/2.
Own Id: OTP-11222

 Improvements and New Features

	Introduced functionality for inspection of system and build configuration.
Own Id: OTP-11196

 Runtime_Tools 1.8.11

 Fixed Bugs and Malfunctions

	Some bugs related to calculation of CPU/scheduler utilization in observer are
corrected.
Current function for a process is accepted to be 'undefined' when running
hipe.
Own Id: OTP-10894

 Improvements and New Features

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

 Runtime_Tools 1.8.10

 Fixed Bugs and Malfunctions

	Fix Table Viewer refresh crash on no more existing ets tables (Thanks to Peti
Gömori)
Own Id: OTP-10635

 Improvements and New Features

	User Guides for the dynamic tracing tools dtrace and systemtap have been added
to the documentation.
Own Id: OTP-10155

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	The backend module appmon_info.erl is moved from appmon application to
runtime_tools. This allows appmon to be run from a remote erlang node towards
a target node which does not have appmon (and its dependencies) installed, as
long as runtime_tools is installed there.
Own Id: OTP-10786

 Runtime_Tools 1.8.9

 Fixed Bugs and Malfunctions

	Change the module-level docs to give complete step-by-step instructions for
using the `dyntrace:p()` trace function. (Thanks to Scott Lystig Fritchie)
Own Id: OTP-10141

	Add 1024 separate USDT probes to dyntrace.erl and dyntrace.c (Thanks to Scott
Lystig Fritchie)
Own Id: OTP-10143

	Relocate bodies of DTrace probes to the statically-linked VM.
Due to various operating systems (in both the DTrace and SystemTap worlds) not
fully supporting DTrace probes (or SystemTap-compatibility mode probes) in
shared libraries, we relocate those probes to the statically-linked virtual
machine. This could be seen as pollution of the pristine VM by a (yet)
experimental feature. However:
1. This code can be eliminated completely by the C preprocessor. 2. Leaving
the probes in the dyntrace NIF shared library simply does not work correctly
on too many platforms. Many thanks to Macneil Shonle at Basho for assisting
when my RSI-injured fingers gave out. (note: Solaris 10 and FreeBSD
9.0-RELEASE can take a long time to compile)
Own Id: OTP-10189

 Runtime_Tools 1.8.8

 Improvements and New Features

	The DTrace source patch from Scott Lystig Fritchie is integrated in the source
tree. Using an emulator with dtrace probe is still not supported for
production use, but may be a valuable debugging tool. Configure with
--with-dynamic-trace=dtrace (or --with-dynamic-trace=systemtap) to create a
build with dtrace probes enabled. See runtime_tools for documentation and
examples.
Own Id: OTP-10017

 Runtime_Tools 1.8.7

 Fixed Bugs and Malfunctions

	Earlier dbg:stop only did erlang:trace_delivered and did not flush the trace
file driver. Therefore there could still be trace messages that were delivered
to the driver (guaranteed by erlang:trace_delivered) but not yet written to
the file when dbg:stop returned. Flushing is now added on each node before the
dbg process terminates.
Own Id: OTP-9651

	File handles created by the trace_file_drv driver was inherited to child
processes. This is now corrected.
Own Id: OTP-9658

 Improvements and New Features

	Erlang/OTP can now be built using parallel make if you limit the number of
jobs, for instance using 'make -j6' or 'make -j10'. 'make -j' does not
work at the moment because of some missing dependencies.
Own Id: OTP-9451

	Two new built-in trace pattern aliases have been added: caller_trace (c) and
caller_exception_trace (cx). See the dbg:ltp/0 documentation for more info.
Own Id: OTP-9458

 Runtime_Tools 1.8.6

 Improvements and New Features

	Two new built-in trace pattern aliases have been added: caller_trace (c) and
caller_exception_trace (cx). See the dbg:ltp/0 documentation for more info.
Own Id: OTP-9458

 Runtime_Tools 1.8.5

 Improvements and New Features

	When a big number of trace patterns are set by inviso the Erlang VM could get
unresponsive for several seconds. This is now corrected.
Own Id: OTP-9048 Aux Id: seq11480

 Runtime_Tools 1.8.4.1

 Fixed Bugs and Malfunctions

	Minor corrections and removal of a temporary workaround.
Own Id: OTP-8755 Aux Id: seq-11628, seq-11639

	Small fix in inviso_autostart_server.
Own Id: OTP-8783 Aux Id: seq11628

 Runtime_Tools 1.8.4

 Improvements and New Features

	Miscellaneous updates.
Own Id: OTP-8705

 Runtime_Tools 1.8.3

 Improvements and New Features

	Cross compilation improvements and other build system improvements.
Most notable:
	Lots of cross compilation improvements. The old cross compilation support
was more or less non-existing as well as broken. Please, note that the cross
compilation support should still be considered as experimental. Also note
that old cross compilation configurations cannot be used without
modifications. For more information on cross compiling Erlang/OTP see the
$ERL_TOP/INSTALL-CROSS.md file.
	Support for staged install using
DESTDIR. The old
broken INSTALL_PREFIX has also been fixed. For more information see the
$ERL_TOP/INSTALL.md file.
	Documentation of the release target of the top Makefile. For more
information see the $ERL_TOP/INSTALL.md file.
	make install now by default creates relative symbolic links instead of
absolute ones. For more information see the $ERL_TOP/INSTALL.md file.
	$ERL_TOP/configure --help=recursive now works and prints help for all
applications with configure scripts.
	Doing make install, or make release directly after make all no longer
triggers miscellaneous rebuilds.
	Existing bootstrap system is now used when doing make install, or
make release without a preceding make all.
	The crypto and ssl applications use the same runtime library path when
dynamically linking against libssl.so and libcrypto.so. The runtime
library search path has also been extended.
	The configure scripts of erl_interface and odbc now search for thread
libraries and thread library quirks the same way as ERTS do.
	The configure script of the odbc application now also looks for odbc
libraries in lib64 and lib/64 directories when building on a 64-bit
system.
	The config.h.in file in the erl_interface application is now
automatically generated in instead of statically updated which reduces the
risk of configure tests without any effect.

(Thanks to Henrik Riomar for suggestions and testing)
(Thanks to Winston Smith for the AVR32-Linux cross configuration and testing)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8323

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

 Runtime_Tools 1.8.2

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

 Runtime_Tools 1.8.1

 Fixed Bugs and Malfunctions

	Makefile.in has been updated to use the LDFLAGS environment variable (if
set). (Thanks to Davide Pesavento.)
Own Id: OTP-8157

 Runtime_Tools 1.8

 Improvements and New Features

	etop would crash if the emulator's custom allocators had been turned off
(e.g. using the +Meamin option).
Own Id: OTP-7519

	The copyright notices have been updated.
Own Id: OTP-7851

	Now, dbg:p/2 accepts {X,Y,Z} process specification as stated in the
documentation. It also now accepts "<X.Y.Z>" like from erlang:pid_to_list/1.
There is now a pre-saved match spec in dbg that saves a lot of typing. Use
dbg:ltp/0 to find out more...
Own Id: OTP-7867

 Runtime_Tools 1.7.3

 Fixed Bugs and Malfunctions

	Fixed a timestamp problem where some events could be sent out of order. Minor
fixes to presentation of data.
Own Id: OTP-7544 Aux Id: otp-7442

 Runtime_Tools 1.7.2

 Fixed Bugs and Malfunctions

	etop now collects process information faster and more reliably than before
(a race condition reported by Igor Goryachev has been eliminated).
Trace messages could be lost when ttb:stop/0 was called.
Own Id: OTP-7164

 Runtime_Tools 1.7.1

 Improvements and New Features

	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	Memory management improvements especially for the runtime system with SMP
support:
	The runtime system with SMP support can now use multiple, thread specific
instances of most memory allocators. This improves performance since it
reduces lock contention in the memory allocators. It may however increase
memory usage for some applications. The runtime system with SMP support will
by default enable this feature on most allocators. The amount of instances
used can be configured.
	driver_alloc(), driver_realloc(), and driver_free() now use their own
erts specific memory allocator instead of the default malloc()
implementation on the system.
	The default configuration of some allocators have been changed to fit
applications that use much memory better.
	Some new erts_alloc configuration parameters have been added.
	erts_alloc_config has been modified to be able to create configurations
suitable for multiple instances of allocators.
	The returned value from erlang:system_info({allocator, Alloc}) has been
changed. This since an allocator may now run in multiple instances.

If you for some reason want the memory allocators to be configured as before,
you can pass the +Mea r11b command-line argument to erl.
For more information see the erts_alloc(3), the m:erts_alloc_config, and
the erlang documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7100

 Runtime_Tools 1.7

 Fixed Bugs and Malfunctions

	dbg could leave traced processes in a suspended state if the tracer process
was killed with exit reason kill.
erlang:suspend_process/2 has been introduced which accepts an option list as
second argument. For more information see the erlang documentation.
Processes suspended via erlang:suspend_process/[1,2] will now be
automatically resumed if the process that called
erlang:suspend_process/[1,2] terminates.
Processes could previously be suspended by one process and resumed by another
unless someone was tracing the suspendee. This is not possible anymore. The
process resuming a process has to be the one that suspended it.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6946

 Improvements and New Features

	The undocumented and unsupported function dbg:tracer/1 has been removed. The
undocumented, unsupported, and broken function dbg:i/1 has been removed.
Own Id: OTP-6939

 Runtime_Tools 1.6.8

 Fixed Bugs and Malfunctions

	In this release the following has been fixed and enhanced: Autostart: It is
now possible to configure modules that shall be loaded by the autostart
mechanism. This because it is not certain that all application systems make
use of the OTP boot script to set up paths to all Erlang modules.
Runtime_tools/Inviso: A bug in the fetch_log functionality has been fixed.
Further a bug that was (supposedly) fixed in a previous patch concerning
meta-tracer write_ti has been fixed (again) in this patch. A bug in
inviso_as_lib making remote autostart config file updates fail has been fixed.
Inviso: inviso_tool has been given a flush API.
Own Id: OTP-6918

 Runtime_Tools 1.6.7

 Improvements and New Features

	The following bugs/improvements have been done: Internal interworking between
inviso_rt and inviso_rt_meta. The call function used by inviso_rt to call
inviso_rt_meta is now protected with a monitor. Inviso_rt_meta now includes
the timestamp of the incoming meta trace message when calling the
call-callback. (Makes it possible to add a "better" timestamp to the ti-file.)
Bug in inviso_tool making it not remove trace patterns when terminating. Bug
in internal function h_start_session making inviso_tool crash if there were no
active nodes to start the session on. The user-inviso_tool and inviso
API-inviso control component request/response gen_server protocols had default
time-out. Since many trace operations can be time consuming, a longer time-out
is necessary. Improved overload protection. It is now possible to let the
overload protection renew itself (e.g after an exit from an external overload
protector). Inviso_rt_meta now fully uses the exception_trace match spec
action term. Run Trace Case API (as in contrast to activate and deactivate
trace case APIs) in inviso_tool. Flush trace-port API added to inviso.
Get_session_data API added to inviso_tool. Improved inviso_tool:stop making it
possible to name nodes which shall not have their trace patterns removed when
inviso_tool terminates. Bug in handling of writing multiple ti-entries if
returned from a call/return_from call-back in inviso_rt_meta Process trace
flags are no longer explicitly removed by the inviso_tool when it terminates.
Not necessary. Inviso_tool get_autostart_data adopted to standard autostarter.
* INCOMPATIBILITY with Meta trace call-backs are called with different
arguments now. *
Own Id: OTP-6881

 Runtime_Tools 1.6.6

 Fixed Bugs and Malfunctions

	A bug in inviso_rt_meta caused an ETS table containing information on
initiated (init_tpm) functions to be lost when suspending tracing. Further an
enhancement to inviso_rt has been introduced making it possible to activate
process trace flags based on globally registered names. It is then not an
error to activate a global name on a node where the name does not reside. The
process count in the return value will simply be set to zero (hence exactly
one node in the NodeResult part of the return value will indicate one matching
process found). A bug was found in fetch_log API. At the same time the
fetch_log functionality was enhanced to also offer flow control making fetcher
processes send chunks of transferred file data at a slower pace.
Own Id: OTP-6703

 Improvements and New Features

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

	An experimental tool called erts_alloc_config has been added.
erts_alloc_config is intended to be used to aid creation of an erts_alloc
configuration that is suitable for a limited number of runtime scenarios. For
more information see the m:erts_alloc_config documentation.
Own Id: OTP-6700

 Runtime_Tools 1.6.5

 Improvements and New Features

	Misc improvements.
Own Id: OTP-6576

 Runtime_Tools 1.6.4

 Improvements and New Features

	This application has been updated to eliminate warnings by Dialyzer.
Own Id: OTP-6551

 Runtime_Tools 1.6.3

 Fixed Bugs and Malfunctions

	This ticket includes several improvements and bugfixes to both runtime_tools
and inviso. The overload mechanism can now also react to incoming messages.
This is useful if an external overload watch-dog is used. Some improvements of
variable bindings has been done to the default autostart mechanism -
inviso_autostart_server. Autostart "jobs" can now be done in parallel,
allowing for some jobs to hang waiting for some parts of the traced system to
become ready before proceeding. Previously when using named meta-match-specs
(tpm_ms) ending up with zero match-specs still kept the meta trace pattern
active. This caused zero match-specs to be equal to unlimited meta tracing on
that particular function. If the internal database becomes empty of meta match
specs, meta trace pattern is removed for that function. Standard public loop
data in the inviso runtime meta tracer process is now extended to a 2-tuple.
The functions ctp/1 and ctpl/1 are added making it possible to remove trace
patterns for a list of functions rather than one by one. Inviso_rt_meta will
now accept a list of binaries to be output into the trace information file, in
additions to a single binary. Further it is also possible to make own output
to the trace information file using the write_ti/1 function. An error was
discovered in inviso_rt making the inviso_rt_meta remain rather than terminate
if the inviso_rt terminated due to "running alone" (not allowed to run without
a control component). A new tool, inviso_tool, has been added to the inviso
application.
Own Id: OTP-6426

 Runtime_Tools 1.6.2

 Fixed Bugs and Malfunctions

	Several minor bugs and race conditions eliminated in the runtime_tools and
observer applications.
Own Id: OTP-6265

 Runtime_Tools 1.6.1

 Improvements and New Features

	There are new BIFs erlang:spawn_monitor/1,3, and the new option monitor
for spawn_opt/2,3,4,5.
The observer_backend module has been updated to handle the new BIFs.
Own Id: OTP-6281

 Runtime_Tools 1.6

Added the runtime part of the Inviso tracer, see the new Inviso application for
more information. This also meant adding an application callback module and an
application supervisor tree for Runtime_Tools.

 Runtime_Tools 1.5.1.1

 Improvements and New Features

	The dbg manual page has been updated with information about how to avoid
deadlock when tracing.
Own Id: OTP-5373 Aux Id: seq9729

 Runtime_Tools 1.5.1

 Fixed Bugs and Malfunctions

	Linked in drivers in the Crypto, and Asn1 applications are now compiled with
the -D_THREAD_SAFE and -D_REENTRANT switches on unix when the emulator has
thread support enabled.
Linked in drivers on MacOSX are not compiled with the undocumented
-lbundle1.o switch anymore. Thanks to Sean Hinde who sent us a patch.
Linked in driver in Crypto, and port programs in SSL, now compiles on OSF1.
Minor Makefile improvements in Runtime_Tools.
Own Id: OTP-5346

LTTng and Erlang/OTP

 Introduction

The Linux Trace Toolkit: next generation is an open source system software
package for correlated tracing of the Linux kernel, user applications and
libraries.
For more information, please visit http://lttng.org

 Building Erlang/OTP with LTTng support

Configure and build Erlang with LTTng support:
For LTTng to work properly with Erlang/OTP you need the following packages
installed:
	LTTng-tools: a command line interface to control tracing sessions.
	LTTng-UST: user space tracing library.

On Ubuntu this can be installed via aptitude:
$ sudo aptitude install lttng-tools liblttng-ust-dev
See Installing LTTng for more
information on how to install LTTng on your system.
After LTTng is properly installed on the system Erlang/OTP can be built with
LTTng support.
$./configure --with-dynamic-trace=lttng
$ make

 Dyntrace Tracepoints

All tracepoints are in the domain of org_erlang_dyntrace
All Erlang types are the string equivalent in LTTng.
process_spawn
	pid : string :: Process ID. Ex. "<0.131.0>"
	parent : string :: Process ID. Ex. "<0.131.0>"
	entry : string :: Code Location. Ex. "lists:sort/1"

Available through erlang:trace/3 with trace flag procs and
{tracer,dyntrace,[]} as tracer module.
Example:
process_spawn: { cpu_id = 3 }, { pid = "<0.131.0>", parent = "<0.130.0>", entry = "erlang:apply/2" }
process_link
	to : string :: Process ID or Port ID. Ex. "<0.131.0>"
	from : string :: Process ID or Port ID. Ex. "<0.131.0>"
	type : string :: "link" | "unlink"

Available through erlang:trace/3 with trace flag procs and
{tracer,dyntrace,[]} as tracer module.
Example:
process_link: { cpu_id = 3 }, { from = "<0.130.0>", to = "<0.131.0>", type = "link" }
process_exit
	pid : string :: Process ID. Ex. "<0.131.0>"
	reason : string :: Exit reason. Ex. "normal"

Available through erlang:trace/3 with trace flag procs and
{tracer,dyntrace,[]} as tracer module.
Example:
process_exit: { cpu_id = 3 }, { pid = "<0.130.0>", reason = "normal" }
process_register
	pid : string :: Process ID. Ex. "<0.131.0>"
	name : string :: Registered name. Ex. "logger"
	type : string :: "register" | "unregister"

Example:
process_register: { cpu_id = 0 }, { pid = "<0.128.0>", name = "dyntrace_lttng_SUITE" type = "register" }
process_scheduled
	pid : string :: Process ID. Ex. "<0.131.0>"
	entry : string :: Code Location. Ex. "lists:sort/1"
	type : string ::
"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"

Available through erlang:trace/3 with trace flag running and
{tracer,dyntrace,[]} as tracer module.
Example:
process_scheduled: { cpu_id = 0 }, { pid = "<0.136.0>", entry = "erlang:apply/2", type = "in" }
port_open
	pid : string :: Process ID. Ex. "<0.131.0>"
	driver : string :: Driver name. Ex. "tcp_inet"
	port : string :: Port ID. Ex. "#Port<0.1031>"

Available through erlang:trace/3 with trace flag ports and
{tracer,dyntrace,[]} as tracer module.
Example:
port_open: { cpu_id = 5 }, { pid = "<0.131.0>", driver = "'/bin/sh -s unix:cmd'", port = "#Port<0.1887>" }
port_exit
	port : string :: Port ID. Ex. "#Port<0.1031>"
	reason : string :: Exit reason. Ex. "normal"

Available through erlang:trace/3 with trace flag ports and
{tracer,dyntrace,[]} as tracer module.
Example:
port_exit: { cpu_id = 5 }, { port = "#Port<0.1887>", reason = "normal" }
port_link
	to : string :: Process ID. Ex. "<0.131.0>"
	from : string :: Process ID. Ex. "<0.131.0>"
	type : string :: "link" | "unlink"

Available through erlang:trace/3 with trace flag ports and
{tracer,dyntrace,[]} as tracer module.
Example:
port_link: { cpu_id = 5 }, { from = "#Port<0.1887>", to = "<0.131.0>", type = "unlink" }
port_scheduled
Available through erlang:trace/3 with trace flag running and
{tracer,dyntrace,[]} as tracer module.
	port : string :: Port ID. Ex. "#Port<0.1031>"
	entry : string :: Callback. Ex. "open"
	type : string ::
"in" | "out" | "in_exiting" | "out_exiting" | "out_exited"

Example:
port_scheduled: { cpu_id = 5 }, { pid = "#Port<0.1905>", entry = "close", type = "out" }
Available through erlang:trace/3 with trace flag running and
{tracer,dyntrace,[]} as tracer module.
function_call
	pid : string :: Process ID. Ex. "<0.131.0>"
	entry : string :: Code Location. Ex. "lists:sort/1"
	depth : integer :: Stack depth. Ex. 0

Available through erlang:trace/3 with trace flag call and
{tracer,dyntrace,[]} as tracer module.
Example:
function_call: { cpu_id = 5 }, { pid = "<0.145.0>", entry = "dyntrace_lttng_SUITE:'-t_call/1-fun-1-'/0", depth = 0 }
function_return
	pid : string :: Process ID. Ex. "<0.131.0>"
	entry : string :: Code Location. Ex. "lists:sort/1"
	depth : integer :: Stack depth. Ex. 0

Available through erlang:trace/3 with trace flag call or return_to and
{tracer,dyntrace,[]} as tracer module.
Example:
function_return: { cpu_id = 5 }, { pid = "<0.145.0>", entry = "dyntrace_lttng_SUITE:waiter/0", depth = 0 }
function_exception
	pid : string :: Process ID. Ex. "<0.131.0>"
	entry : string :: Code Location. Ex. "lists:sort/1"
	class : string :: Error reason. Ex. "error"

Available through erlang:trace/3 with trace flag call and
{tracer,dyntrace,[]} as tracer module.
Example:
function_exception: { cpu_id = 5 }, { pid = "<0.144.0>", entry = "t:call_exc/1", class = "error" }
message_send
	from : string :: Process ID or Port ID. Ex. "<0.131.0>"
	to : string :: Process ID or Port ID. Ex. "<0.131.0>"
	message : string :: Message sent. Ex. "{<0.162.0>,ok}"

Available through erlang:trace/3 with trace flag send and
{tracer,dyntrace,[]} as tracer module.
Example:
message_send: { cpu_id = 3 }, { from = "#Port<0.1938>", to = "<0.160.0>", message = "{#Port<0.1938>,eof}" }
message_receive
	to : string :: Process ID or Port ID. Ex. "<0.131.0>"
	message : string :: Message received. Ex. "{<0.162.0>,ok}"

Available through erlang:trace/3 with trace flag 'receive' and
{tracer,dyntrace,[]} as tracer module.
Example:
message_receive: { cpu_id = 7 }, { to = "<0.167.0>", message = "{<0.165.0>,ok}" }
gc_minor_start
	pid : string :: Process ID. Ex. "<0.131.0>"
	need : integer :: Heap need. Ex. 2
	heap : integer :: Young heap word size. Ex. 233
	old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and
{tracer,dyntrace,[]} as tracer module.
Example:
gc_minor_start: { cpu_id = 0 }, { pid = "<0.172.0>", need = 0, heap = 610, old_heap = 0 }
gc_minor_end
	pid : string :: Process ID. Ex. "<0.131.0>"
	reclaimed : integer :: Heap reclaimed. Ex. 2
	heap : integer :: Young heap word size. Ex. 233
	old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and
{tracer,dyntrace,[]} as tracer module.
Example:
gc_minor_end: { cpu_id = 0 }, { pid = "<0.172.0>", reclaimed = 120, heap = 1598, old_heap = 1598 }
gc_major_start
	pid : string :: Process ID. Ex. "<0.131.0>"
	need : integer :: Heap need. Ex. 2
	heap : integer :: Young heap word size. Ex. 233
	old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and
{tracer,dyntrace,[]} as tracer module.
Example:
gc_major_start: { cpu_id = 0 }, { pid = "<0.172.0>", need = 8, heap = 2586, old_heap = 1598 }
gc_major_end
	pid : string :: Process ID. Ex. "<0.131.0>"
	reclaimed : integer :: Heap reclaimed. Ex. 2
	heap : integer :: Young heap word size. Ex. 233
	old_heap : integer :: Old heap word size. Ex. 233

Available through erlang:trace/3 with trace flag garbage_collection and
{tracer,dyntrace,[]} as tracer module.
Example:
gc_major_end: { cpu_id = 0 }, { pid = "<0.172.0>", reclaimed = 240, heap = 4185, old_heap = 0 }

 BEAM Tracepoints

All tracepoints are in the domain of org_erlang_otp
All Erlang types are the string equivalent in LTTng.
driver_init
	driver : string :: Driver name. Ex. "tcp_inet"
	major : integer :: Major version. Ex. 3
	minor : integer :: Minor version. Ex. 1
	flags : integer :: Flags. Ex. 1

Example:
driver_init: { cpu_id = 2 }, { driver = "caller_drv", major = 3, minor = 3, flags = 1 }
driver_start
	pid : string :: Process ID. Ex. "<0.131.0>"
	driver : string :: Driver name. Ex. "tcp_inet"
	port : string :: Port ID. Ex. "#Port<0.1031>"

Example:
driver_start: { cpu_id = 2 }, { pid = "<0.198.0>", driver = "caller_drv", port = "#Port<0.3676>" }
driver_output
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"
	bytes : integer :: Size of data returned. Ex. 82

Example:
driver_output: { cpu_id = 2 }, { pid = "<0.198.0>", port = "#Port<0.3677>", driver = "/bin/sh -s unix:cmd", bytes = 36 }
driver_outputv
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"
	bytes : integer :: Size of data returned. Ex. 82

Example:
driver_outputv: { cpu_id = 5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp_inet", bytes = 3 }
driver_ready_input
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_ready_input: { cpu_id = 5 }, { pid = "<0.189.0>", port = "#Port<0.3637>", driver = "inet_gethost 4 " }
driver_ready_output
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_ready_output: { cpu_id = 5 }, { pid = "<0.194.0>", port = "#Port<0.3663>", driver = "tcp_inet" }
driver_timeout
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_timeout: { cpu_id = 5 }, { pid = "<0.196.0>", port = "#Port<0.3664>", driver = "tcp_inet" }
driver_stop_select
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_stop_select: { cpu_id = 5 }, { driver = "unknown" }
driver_flush
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_flush: { cpu_id = 7 }, { pid = "<0.204.0>", port = "#Port<0.3686>", driver = "tcp_inet" }
driver_stop
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_stop: { cpu_id = 5 }, { pid = "[]", port = "#Port<0.3673>", driver = "tcp_inet" }
driver_process_exit
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

driver_ready_async
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"

Example:
driver_ready_async: { cpu_id = 3 }, { pid = "<0.181.0>", port = "#Port<0.3622>", driver = "tcp_inet" }
driver_call
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"
	command : integer :: Command integer. Ex. 1
	bytes : integer :: Size of data returned. Ex. 82

Example:
driver_call: { cpu_id = 2 }, { pid = "<0.202.0>", port = "#Port<0.3676>", driver = "caller_drv", command = 0, bytes = 2 }
driver_control
	pid : string :: Process ID. Ex. "<0.131.0>"
	port : string :: Port ID. Ex. "#Port<0.1031>"
	driver : string :: Driver name. Ex. "tcp_inet"
	command : integer :: Command integer. Ex. 1
	bytes : integer :: Size of data returned. Ex. 82

Example:
driver_control: { cpu_id = 3 }, { pid = "<0.32767.8191>", port = "#Port<0.0>", driver = "forker", command = 83, bytes = 32 }
carrier_create
	type : string :: Carrier type. Ex. "ets_alloc"
	instance : integer :: Allocator instance. Ex. 1
	size : integer :: Carrier size. Ex. 262144
	mbc_carriers : integer :: Number of multiblock carriers in instance. Ex. 3
	mbc_carriers_size : integer :: Total size of multiblock blocks carriers in
instance. Ex. 1343488
	mbc_blocks : integer :: Number of multiblock blocks in instance. Ex. 122
	mbc_blocks_size : integer :: Total size of all multiblock blocks in
instance. Ex. 285296
	sbc_carriers : integer :: Number of singleblock carriers in instance. Ex.
1
	sbc_carriers_size : integer :: Total size of singleblock blocks carriers in
instance. Ex. 1343488
	sbc_blocks : integer :: Number of singleblocks in instance. Ex. 1
	sbc_blocks_size : integer :: Total size of all singleblock blocks in
instance. Ex. 285296

Example:
carrier_create: { cpu_id = 2 }, { type = "ets_alloc", instance = 7, size = 2097152, mbc_carriers = 4, mbc_carriers_size = 3440640, mbc_blocks = 526, mbc_blocks_size = 1278576, sbc_carriers = 0, sbc_carriers_size = 0, sbc_blocks = 0, sbc_blocks_size = 0 }
carrier_destroy
	type : string :: Carrier type. Ex. "ets_alloc"
	instance : integer :: Allocator instance. Ex. 1
	size : integer :: Carrier size. Ex. 262144
	mbc_carriers : integer :: Number of multiblock carriers in instance. Ex. 3
	mbc_carriers_size : integer :: Total size of multiblock blocks carriers in
instance. Ex. 1343488
	mbc_blocks : integer :: Number of multiblock blocks in instance. Ex. 122
	mbc_blocks_size : integer :: Total size of all multiblock blocks in
instance. Ex. 285296
	sbc_carriers : integer :: Number of singleblock carriers in instance. Ex.
1
	sbc_carriers_size : integer :: Total size of singleblock blocks carriers in
instance. Ex. 1343488
	sbc_blocks : integer :: Number of singleblocks in instance. Ex. 1
	sbc_blocks_size : integer :: Total size of all singleblock blocks in
instance. Ex. 285296

Example:
carrier_destroy: { cpu_id = 6 }, { type = "ets_alloc", instance = 7, size = 262144, mbc_carriers = 3, mbc_carriers_size = 3178496, mbc_blocks = 925, mbc_blocks_size = 2305336, sbc_carriers = 0, sbc_carriers_size = 0, sbc_blocks = 0, sbc_blocks_size = 0 }
carrier_pool_put
	type : string :: Carrier type. Ex. "ets_alloc"
	instance : integer :: Allocator instance. Ex. 1
	size : integer :: Carrier size. Ex. 262144

Example:
carrier_pool_put: { cpu_id = 3 }, { type = "ets_alloc", instance = 5, size = 1048576 }
carrier_pool_get
	type : string :: Carrier type. Ex. "ets_alloc"
	instance : integer :: Allocator instance. Ex. 1
	size : integer :: Carrier size. Ex. 262144

Example:
carrier_pool_get: { cpu_id = 7 }, { type = "ets_alloc", instance = 4, size = 3208 }

 Example of process tracing

An example of process tracing of os_mon and friends.
Clean start of lttng in a bash shell.
$ lttng create erlang-demo
Spawning a session daemon
Session erlang-demo created.
Traces will be written in /home/egil/lttng-traces/erlang-demo-20160526-165920
Start an Erlang node with lttng enabled.
$ erl
Erlang/OTP 19 [erts-8.0] [source-4d7b24d] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [lttng]

Eshell V8.0 (abort with ^G)
1>
Load the dyntrace module.
1> l(dyntrace).
{module,dyntrace}
All tracepoints via dyntrace are now visible and can be listed through
lttng list -u.
Enable the process_register LTTng tracepoint for Erlang.
$ lttng enable-event -u org_erlang_dyntrace:process_register
UST event org_erlang_dyntrace:process_register created in channel channel0
Enable process tracing for new processes and use dyntrace as tracer backend.
2> erlang:trace(new,true,[procs,{tracer,dyntrace,[]}]).
0
Start LTTng tracing.
$ lttng start
Tracing started for session erlang-demo
Start the os_mon application in Erlang.
3> application:ensure_all_started(os_mon).
{ok,[sasl,os_mon]}
Stop LTTng tracing and view the result.
$ lttng stop
Tracing stopped for session erlang-demo
$ lttng view
[17:20:42.561168759] (+?.?????????) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.66.0>", name = "sasl_sup", type = "register" }
[17:20:42.561215519] (+0.000046760) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.67.0>", name = "sasl_safe_sup", type = "register" }
[17:20:42.562149024] (+0.000933505) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.68.0>", name = "alarm_handler", type = "register" }
[17:20:42.571035803] (+0.008886779) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.69.0>", name = "release_handler", type = "register" }
[17:20:42.574939868] (+0.003904065) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.74.0>", name = "os_mon_sup", type = "register" }
[17:20:42.576818712] (+0.001878844) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.75.0>", name = "disksup", type = "register" }
[17:20:42.580032013] (+0.003213301) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.76.0>", name = "memsup", type = "register" }
[17:20:42.583046339] (+0.003014326) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.78.0>", name = "cpu_sup", type = "register" }
[17:20:42.586206242] (+0.003159903) elxd1168lx9 org_erlang_dyntrace:process_register: \
 { cpu_id = 5 }, { pid = "<0.82.0>", name = "timer_server", type = "register" }

DTrace and Erlang/OTP

 History

The first implementation of DTrace probes for the Erlang virtual machine was
presented at the 2008 Erlang User Conference. That
work, based on the Erlang/OTP R12 release, was discontinued due to what appears
to be miscommunication with the original developers.
Several users have created Erlang port drivers, linked-in drivers, or NIFs that
allow Erlang code to try to activate a probe, e.g.
foo_module:dtrace_probe("message goes here!").

 Goals

	Annotate as much of the Erlang VM as is practical.
	The initial goal is to trace file I/O operations.
	Support all platforms that implement DTrace: OS X, Solaris, and (I hope)
FreeBSD and NetBSD.
	To the extent that it's practical, support SystemTap on Linux via DTrace
provider compatibility.
	Allow Erlang code to supply annotations.

 Supported platforms

	OS X 10.6.x / Snow Leopard, OS X 10.7.x / Lion and probably newer versions.
	Solaris 10. I have done limited testing on Solaris 11 and OpenIndiana release
151a, and both appear to work.
	FreeBSD 9.0 and 10.0.
	Linux via SystemTap compatibility. Please see
$ERL_TOP/HOWTO/SYSTEMTAP.md for more details.

Just add the --with-dynamic-trace=dtrace option to your command when you run
the configure script. If you are using systemtap, the configure option is
--with-dynamic-trace=systemtap

 Status

As of R15B01, the dynamic trace code is included in the OTP source distribution,
although it's considered experimental. The main development of the dtrace code
still happens outside of Ericsson, but there is no need to fetch a patched
version of the OTP source to get the basic functionality.

 DTrace probe specifications

Probe specifications can be found in erts/emulator/beam/erlang_dtrace.d, and a
few example scripts can be found under lib/runtime_tools/examples/.

SystemTap and Erlang/OTP

 Introduction

SystemTap is DTrace for Linux. In fact Erlang's SystemTap support is built using
SystemTap's DTrace compatibility's layer. For an introduction to Erlang DTrace
support read $ERL_TOP/HOWTO/DTRACE.md.

 Requisites

	Linux Kernel with UTRACE support
check for UTRACE support in your current kernel:
grep CONFIG_UTRACE /boot/config-`uname -r`
CONFIG_UTRACE=y
Fedora 16 is known to contain UTRACE, for most other Linux distributions a
custom build kernel will be required. Check Fedora's SystemTap documentation
for additional required packages (e.g. Kernel Debug Symbols)

	SystemTap > 1.6
A the time of writing this, the latest released version of SystemTap is
version 1.6. Erlang's DTrace support requires a MACRO that was introduced
after that release. So either get a newer release or build SystemTap from git
yourself (see: http://sourceware.org/systemtap/getinvolved.html)

 Building Erlang

Configure and build Erlang with SystemTap support:
./configure --with-dynamic-trace=systemtap + whatever args you need
make

 Testing

SystemTap, unlike DTrace, needs to know what binary it is tracing and has to be
able to read that binary before it starts tracing. Your probe script therefore
has to reference the correct beam emulator and stap needs to be able to find
that binary. The examples are written for "beam", but other versions such as
"beam.smp" or "beam.debug.smp" might exist (depending on your configuration).
Make sure you either specify the full the path of the binary in the probe or
your "beam" binary is in the search path.
All available probes can be listed like this:
stap -L 'process("beam").mark("*")'
or:
PATH=/path/to/beam:$PATH stap -L 'process("beam").mark("*")'
Probes in the dtrace.so NIF library like this:
PATH=/path/to/dtrace/priv/lib:$PATH stap -L 'process("dtrace.so").mark("*")'

 Running SystemTap scripts

Adjust the process("beam") reference to your beam version and attach the script
to a running "beam" instance:
stap /path/to/probe/script/port1.systemtap -x <pid of beam>

dbg

The Text Based Trace Facility
This module implements a text based interface to the
trace:process/4, trace:port/4, and trace:function/4 BIFs,
simplifying tracing of functions, processes, ports, and messages.
To quickly get started on tracing function calls you can use the
following code in the Erlang shell:
1> dbg:tracer(). % Start the default trace message receiver
{ok,<0.90.0>}
2> dbg:p(all, c). % Set upp call tracing on all processes
{ok,[{matched,nonode@nohost,49}]}
3> dbg:tp(lists, seq, cx). % Set up call and exception tracing on lists:seq/2,3
{ok,[{matched,nonode@nohost,2},{saved,cx}]}
4> lists:seq(1, 10).
(<0.88.0>) call lists:seq(1,10) ({erl_eval,do_apply,7,{"erl_eval.erl",904}})
[1,2,3,4,5,6,7,8,9,10]
(<0.88.0>) returned from lists:seq/2 -> [1,2,3,4,5,6,7,8,9,10]
The utilities are also suitable to use in system testing on large systems, where
other tools have too severe impact on the system performance. Some primitive
support for sequential tracing is also included; see the
advanced topics section.

 Simple tracing from the shell with no prior set up

To trace a call to a function with minimal fuss, call dbg:c(Module, Name, Arguments). dbg:c/3 starts a temporary trace
receiver, enables all trace flags, and calls the designated function
from a temporary process. For example, here is how to trace a call
to application:which_applications/0:
1> dbg:c(application, which_applications, []).
(<0.92.0>) <0.45.0> ! {'$gen_call',{<0.92.0>,
 [alias|
 #Ref<0.0.11779.270031856.1478295555.230456>]},
 which_applications} (Timestamp: {1710,
 847802,
 479222})
(<0.92.0>) out {gen,do_call,4} (Timestamp: {1710,847802,479231})
(<0.92.0>) in {gen,do_call,4} (Timestamp: {1710,847802,479271})
(<0.92.0>) << {[alias|#Ref<0.0.11779.270031856.1478295555.230456>],
 [{stdlib,"ERTS CXC 138 10","5.2.1"},
 {kernel,"ERTS CXC 138 10","9.2.2"}]} (Timestamp: {1710,
 847802,
 479274})
[{stdlib,"ERTS CXC 138 10","5.2.1"},
 {kernel,"ERTS CXC 138 10","9.2.2"}]
Four trace events are generated:
	A send event (!) for the sending of a request from the current process
to the application_controller process.
	A schedule-out event (out) when the current process schedules out while
waiting in a receive for the reply to arrive.
	A schedule-in event (in) when the current process is scheduled in when
reply has arrived.
	A receive event (<<) when the current process retrieves the reply from
the application_controller process.

The dbg:c/4 function has a fourth argument for specifying the trace flags.
Here is how to only show message sending and receiving:
2> dbg:c(application, which_applications, [], m).
(<0.96.0>) <0.45.0> ! {'$gen_call',{<0.96.0>,
 [alias|
 #Ref<0.0.12291.270031856.1478295555.230496>]},
 which_applications}
(<0.96.0>) << {[alias|#Ref<0.0.12291.270031856.1478295555.230496>],
 [{stdlib,"ERTS CXC 138 10","5.2.1"},
 {kernel,"ERTS CXC 138 10","9.2.2"}]}
[{stdlib,"ERTS CXC 138 10","5.2.1"},
 {kernel,"ERTS CXC 138 10","9.2.2"}]

 Tracing from the shell

Another way of tracing from the shell is to explicitly start a tracer and
set the trace flags of your choice on the processes you want to trace.
For example, here is how to trace messages and process events:
1> Pid = spawn(fun() -> receive {From,Msg} -> From ! Msg end end).
<0.90.0>
2> dbg:tracer().
{ok,<0.92.0>}
3> dbg:p(Pid, [m,procs]).
{ok,[{matched,nonode@nohost,1}]}
4> Pid ! {self(),hello}.
(<0.90.0>) << {<0.88.0>,hello}
{<0.88.0>,hello}
(<0.90.0>) <0.88.0> ! hello
(<0.90.0>) exit normal
5> flush().
Shell got hello
ok
In order to trace functions call, in addition to enabling the call trace flag
for the process, it is also necessary to set a trace pattern for the functions
to trace.
Example:
1> dbg:tracer().
{ok,<0.90.0>}
2> dbg:p(all, call).
{ok,[{matched,nonode@nohost,49}]}
3> dbg:tp(lists, last, 1, []).
{ok,[{matched,nonode@nohost,1}]}
4> lists:last([a,b,c,d,e]).
(<0.88.0>) call lists:last([a,b,c,d,e])
e
5> dbg:tp(lists, last, 1, [{'_',[],[{return_trace}]}]).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
6> lists:last([a,b,c,d,e]).
(<0.88.0>) call lists:last([a,b,c,d,e])
(<0.88.0>) returned from lists:last/1 -> e
e

 Advanced topics - combining with seq_trace

The dbg module is primarily targeted towards tracing through the
trace:process/4 function. It is sometimes desired to trace messages in a more
delicate way, which can be done with the help of the seq_trace module.
seq_trace implements sequential tracing (known in the AXE10 world, and
sometimes called "forlopp tracing"). dbg can interpret messages generated from
seq_trace and the same tracer function for both types of tracing can be used.
The seq_trace messages can also be sent to a trace port for further analysis.
As a match specification can turn on sequential tracing, the combination of
dbg and seq_trace can be powerful. This brief example shows a session
where sequential tracing is used to trace the dbg module and the trace itself:
1> dbg:tracer().
{ok,<0.30.0>}
2> {ok, Tracer} = dbg:get_tracer().
{ok,<0.31.0>}
3> seq_trace:set_system_tracer(Tracer).
false
4> dbg:tp(dbg, get_tracer, 0, [{[],[],[{set_seq_token, send, true}]}]).
{ok,[{matched,nonode@nohost,1},{saved,1}]}
5> dbg:p(all,call).
{ok,[{matched,nonode@nohost,22}]}
6> dbg:get_tracer(), seq_trace:set_token([]).
(<0.25.0>) call dbg:get_tracer()
SeqTrace [0]: (<0.25.0>) <0.30.0> ! {<0.25.0>,get_tracer} [Serial: {2,4}]
SeqTrace [0]: (<0.30.0>) <0.25.0> ! {dbg,{ok,<0.31.0>}} [Serial: {4,5}]
{1,0,5,<0.30.0>,4}
This session sets the system_tracer to the same process as the
ordinary tracer process (i. e. <0.31.0>) and sets the trace pattern
for the function dbg:get_tracer to one that has the action of
setting a sequential token. When the function is called by a traced
process (all processes are traced in this case), the process gets
"contaminated" by the token and seq_trace messages are sent both for
the server request and the response. The seq_trace:set_token([])
after the call clears the seq_trace token, which is why no messages
are sent when the answer propagates via the shell to the console
port. Otherwise the output would been more noisy.

 Note of caution

When tracing function calls on a group leader process (an I/O process), there is
risk of causing a deadlock. This will happen if a group leader process generates
a trace message and the tracer process, by calling the trace handler function,
sends an I/O request to the same group leader. The problem can only occur if the
trace handler prints to the tty using an io function such as
format/2. Note that when dbg:p(all, call) is called, IO
processes are also traced. Here is an example:
%% Using a default line editing shell
1> dbg:tracer(process, {fun(Msg,_) -> io:format("~p~n", [Msg]), 0 end, 0}).
{ok,<0.37.0>}
2> dbg:p(all, [call]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp(mymod,[{'_',[],[]}]).
{ok,[{matched,nonode@nohost,0},{saved,1}]}
4> mymod: % TAB pressed here
%% -- Deadlock --
Here is another example:
%% Using a shell without line editing (oldshell)
1> dbg:tracer(process).
{ok,<0.31.0>}
2> dbg:p(all, [call]).
{ok,[{matched,nonode@nohost,25}]}
3> dbg:tp(lists,[{'_',[],[]}]).
{ok,[{matched,nonode@nohost,0},{saved,1}]}
% -- Deadlock --
The reason we get a deadlock in the first example is because when TAB is pressed
to expand the function name, the group leader (which handles character input)
calls mymod:module_info(). This generates a trace message which, in turn,
causes the tracer process to send an IO request to the group leader (by calling
io:format/2). We end up in a deadlock.
In the second example we use the default trace handler function. This
handler prints to the tty by sending IO requests to the user
process. When Erlang is started in the oldshell mode, the shell
process will have user as its group leader and so will the tracer
process in this example. Since user calls functions in lists we
end up in a deadlock as soon as the first IO request is sent.
Here are a few suggestions for avoiding deadlock:
	Do not trace the group leader of the tracer process. If tracing has been
switched on for all processes, call dbg:p(TracerGLPid, clear) to stop tracing
the group leader (TracerGLPid).
process_info(TracerPid, group_leader) tells you which
process this is (TracerPid is returned from dbg:get_tracer/0).
	Do not trace the user process if using the default trace handler function.
	In your own trace handler function, call erlang:display/1 instead of an io
function or, if user is not used as group leader, print to user instead of
the default group leader. Example: io:format(user, Str, Args).

 Summary

 Types

 dyntrace - runtime_tools v2.1.1

dyntrace

Interface to dynamic tracing
This module implements interfaces to dynamic tracing, should such be compiled
into the virtual machine. For a standard and/or commercial build, no dynamic
tracing is available, in which case none of the functions in this module is
usable or give any effect.
Should dynamic tracing be enabled in the current build, either by configuring
with ./configure --with-dynamic-trace=dtrace or with
./configure --with-dynamic-trace=systemtap, the module can be used for two
things:
	Trigger the user-probe user_trace_i4s4 in the NIF library dyntrace.so by
calling dyntrace:p/{1,2,3,4,5,6,7,8}.
	Set a user specified tag that will be present in the trace messages of both
the efile_drv and the user-probe mentioned above.

Both building with dynamic trace probes and using them is experimental and
unsupported by Erlang/OTP. It is included as an option for the developer to
trace and debug performance issues in their systems.
The original implementation is mostly done by Scott Lystiger Fritchie as an Open
Source Contribution and it should be viewed as such even though the source for
dynamic tracing as well as this module is included in the main distribution.
However, the ability to use dynamic tracing of the virtual machine is a very
valuable contribution which OTP has every intention to maintain as a tool for
the developer.
How to write d programs or systemtap scripts can be learned from books and
from a lot of pages on the Internet. This manual page does not include any
documentation about using the dynamic trace tools of respective platform.
However, the examples directory of the runtime_tools application contains
comprehensive examples of both d and systemtap programs that will help you
get started. Another source of information is the dtrace and
systemtap chapters in the Runtime Tools Users' Guide.

 Summary

 Types

 instrument - runtime_tools v2.1.1

instrument

Analysis and Utility Functions for Instrumentation
The module instrument contains support for studying the resource usage in an
Erlang runtime system. Currently, only the allocation of memory can be studied.
Note
Since this module inspects internal details of the runtime system it may
differ greatly from one version to another. We make no compatibility
guarantees in this module.

 See Also

erts_alloc(3), erl(1)

 Summary

 Types

 msacc - runtime_tools v2.1.1

msacc

Convenience functions for microstate accounting
This module implements some convenience functions for analyzing microstate
accounting data. For details about how to use the basic API and what the
different states represent, see
erlang:statistics(microstate_accounting).

Basic Scenario
1> msacc:start(1000).
ok
2> msacc:print().
Average thread real-time : 1000513 us
Accumulated system run-time : 2213 us
Average scheduler run-time : 1076 us

 Thread aux check_io emulator gc other port sleep

Stats per thread:
 async(0) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
 async(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
 aux(1) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%
 scheduler(1) 0.00% 0.03% 0.13% 0.00% 0.01% 0.00% 99.82%
 scheduler(2) 0.00% 0.00% 0.00% 0.00% 0.03% 0.00% 99.97%

Stats per type:
 async 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
 aux 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 99.99%
 scheduler 0.00% 0.02% 0.06% 0.00% 0.02% 0.00% 99.89%
ok
This first command enables microstate accounting for 1000 milliseconds. See
start/0, stop/0, reset/0, and start/1 for more details. The second
command prints the statistics gathered during that time. First three general
statistics are printed.
	Average real-time - The average time spent collecting data in the threads.
This should be close to the time which data was collected.

	System run-time - The total run-time of all threads in the system. This is
what you get if you call msacc:stats(total_runtime,Stats).

	Average scheduler run-time - The average run-time for the schedulers. This
is the average amount of time the schedulers did not sleep.

Then one column per state is printed with a the percentage of time this thread
spent in the state out of it's own real-time. After the thread specific time,
the accumulated time for each type of thread is printed in a similar format.
Since we have the average real-time and the percentage spent in each state we
can easily calculate the time spent in each state by multiplying
Average thread real-time with Thread state %, that is, to get the time Scheduler
1 spent in the emulator state we do 1000513us * 0.13% = 1300us.

 Summary

 Types

 scheduler - runtime_tools v2.1.1

scheduler

Measure scheduler utilization
This module contains utility functions for easy measurement and calculation of
scheduler utilization. It act as a wrapper around the more primitive API
erlang:statistics(scheduler_wall_time).
The simplest usage is to call the blocking
scheduler:utilization(Seconds).
For non blocking and/or continuous calculation of scheduler utilization, the
recommended usage is:
	First call
erlang:system_flag(scheduler_wall_time, true)
to enable scheduler wall time measurements.
	Call get_sample/0 to collect samples with some time in between.
	Call utilization/2 to calculate the scheduler utilization in the interval
between two samples.
	When done call
erlang:system_flag(scheduler_wall_time, false)
to disable scheduler wall time measurements and avoid unecessary CPU overhead.

To get correct values from utilization/2, it is important that
scheduler_wall_time is kept enabled during the entire interval between the two
samples. To ensure this, the process that called
erlang:system_flag(scheduler_wall_time, true)
must be kept alive, as scheduler_wall_time will automatically be disabled if
it terminates.

 Summary

 Types

 system_information - runtime_tools v2.1.1

system_information

System Information

 Summary

 Functions

 OEBPS/dist/epub-CB7BJMUW.js
(()=>{var g=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var l="ex_doc:settings",d={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=d,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(l);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(l,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false