

 kernel

 v10.2

 [image: Logo]

 Table of contents

 	Kernel Application

 	Kernel Release Notes

 	User's Guides

 	Introduction

 	Socket Usage

 	Logging

 	Logging Cookbook

 	EEP-48: Documentation storage and format

 	References

 	app

 	config

 	

 	Modules

 	Code & System

 	application

 	code

 	erl_ddll

 	error_handler

 	heart

 	os

 	Distribution

 	auth

 	erl_boot_server

 	erl_epmd

 	erpc

 	global

 	global_group

 	net_adm

 	net_kernel

 	pg

 	rpc

 	Files & Networking

 	file

 	gen_sctp

 	gen_tcp

 	gen_udp

 	inet

 	inet_res

 	net

 	socket

 	Logging

 	disk_log

 	error_logger

 	logger

 	logger_disk_log_h

 	logger_filters

 	logger_formatter

 	logger_handler

 	logger_std_h

 	wrap_log_reader

 	Tracing

 	seq_trace

 	trace

Kernel Application

 Description

The Kernel application has all the code necessary to run the Erlang runtime
system: file servers, code servers, and so on.
The Kernel application is the first application started. It is mandatory in the
sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
Kernel contains the following functional areas:
	Start, stop, supervision, configuration, and distribution of applications
	Code loading
	Logging
	Global name service
	Supervision of Erlang/OTP
	Communication with sockets
	Operating system interface

 Logger Handlers

Two standard logger handlers are defined in the Kernel application. These are
described in the Kernel User's Guide, and in the
logger_std_h and logger_disk_log_h manual pages.

 OS Signal Event Handler

Asynchronous OS signals may be subscribed to via the Kernel applications event
manager (see OTP Design Principles and
gen_event) registered as erl_signal_server. A default signal handler is
installed which handles the following signals:
	sigusr1 - The default handler will halt Erlang and produce a crashdump
with slogan "Received SIGUSR1". This is equivalent to calling
erlang:halt("Received SIGUSR1").

	sigquit - The default handler will halt Erlang immediately. This is
equivalent to calling erlang:halt().

	sigterm - The default handler will terminate Erlang normally. This is
equivalent to calling init:stop().

 Events

Any event handler added to erl_signal_server must handle the following events.
	sighup - Hangup detected on controlling terminal or death of controlling
process

	sigquit - Quit from keyboard

	sigabrt - Abort signal from abort

	sigalrm - Timer signal from alarm

	sigterm - Termination signal

	sigusr1 - User-defined signal 1

	sigusr2 - User-defined signal 2

	sigchld - Child process stopped or terminated

	sigstop - Stop process

	sigtstp - Stop typed at terminal

Setting OS signals are described in os:set_signal/2.

 Configuration

The following configuration parameters are defined for the Kernel application.
For more information about configuration parameters, see file
app.
	connect_all = true | false - If enabled (true), which
also is the default, global will actively connect to all nodes that
becomes known to it. Note that you also want to enable
prevent_overlapping_partitions
in order for global to ensure that a fully connected network is maintained.
prevent_overlapping_partitions will also prevent inconsistencies in
global's name registration and locking.
The now deprecated command line argument
-connect_all <boolean> has the same
effect as the connect_all configuration parameter. If this configuration
parameter is defined, it will override the command line argument.

	distributed = [Distrib] - Specifies which applications
that are distributed and on which nodes they are allowed to execute. In this
parameter:
	Distrib = {App,Nodes} | {App,Time,Nodes}

	App = atom()
	Time = integer()>0
	Nodes = [node() | {node(),...,node()}]

The parameter is described in application:load/2.

	dist_auto_connect = Value - Specifies when nodes
are automatically connected. If this parameter is not specified, a node is
always automatically connected, for example, when a message is to be sent to
that node. Value is one of:
	never - Connections are never automatically established, they must be
explicitly connected. See net_kernel.

	once - Connections are established automatically, but only once per
node. If a node goes down, it must thereafter be explicitly connected. See
net_kernel.

	epmd_module = module() - Configures the module
responsible for communication with epmd. If this parameter
is undefined, it defaults to erl_epmd.
The now deprecated command line argument
-epmd_module <module> has the same
effect as the epmd_module configuration parameter. If this configuration
parameter is defined, it will override the command line argument.

	erl_epmd_node_listen_port = integer() - Configures the port used by erl_epmd
to listen for connection and connect to other nodes. If this flag is set, the
Erlang VM will boot in distributed mode even if EPMD is not available. If not
set, a port is chosen automatically (equivalent to port 0). See erl_epmd
for more details.
The now deprecated command line argument
erl_epmd_port <module> has the same
effect as the erl_epmd_node_listen_port configuration parameter. If this
configuration parameter is defined, it will override the command line argument.

	permissions = [Perm] - Specifies the default permission
for applications when they are started. In this parameter:
	Perm = {ApplName,Bool}
	ApplName = atom()
	Bool = boolean()

Permissions are described in application:permit/2.

	logger = [Config] - Specifies the configuration for
Logger, except the primary log level, which is specified with
logger_level, and the compatibility with
SASL Error Logging, which is specified with
logger_sasl_compatible.
The loggerparameter is described in section
Logging in the Kernel User's Guide.

	logger_level = Level - Specifies the primary log level
for Logger. Log events with the same, or a more severe level, pass through the
primary log level check. See section Logging in the
Kernel User's Guide for more information about Logger and log levels.
Level = emergency | alert | critical | error | warning | notice | info | debug | all | none
To change the primary log level at runtime, use
logger:set_primary_config(level, Level).
Defaults to notice.

	logger_metadata = Metadata - Specifies primary
metadata for log events.
Metadata = map()
Defaults to #{}.

	logger_sasl_compatible = true | false -
Specifies if Logger behaves backwards compatible with the SASL error logging
functionality from releases prior to Erlang/OTP 21.0.
If this parameter is set to true, the default Logger handler does not log
any progress-, crash-, or supervisor reports. If the SASL application is then
started, it adds a Logger handler named sasl, which logs these events
according to values of the SASL configuration parameter sasl_error_logger
and sasl_errlog_type.
See section
Deprecated Error Logger Event Handlers and Configuration
in the sasl(6) manual page for information about the SASL configuration
parameters.
See section SASL Error Logging in the SASL User's
Guide, and section
Backwards Compatibility with error_logger
in the Kernel User's Guide for information about the SASL error logging
functionality, and how Logger can be backwards compatible with this.
Defaults to false.
Note
If this parameter is set to true, sasl_errlog_type indicates that
progress reports shall be logged, and the configured primary log level is
notice or more severe, then SASL automatically sets the primary log level
to info. That is, this setting can potentially overwrite the value of the
Kernel configuration parameter logger_level. This is to allow progress
reports, which have log level info, to be forwarded to the handlers.

	global_groups = [GroupTuple] - Defines global groups,
see global_group. In this parameter:
	GroupTuple = {GroupName, [Node]} | {GroupName, PublishType, [Node]}

	GroupName = atom()
	PublishType = normal | hidden

	Node = node()

	inet_default_connect_options = [{Opt, Val}] - Specifies default options for connect
sockets, see inet.

	inet_default_listen_options = [{Opt, Val}] - Specifies default options for listen (and accept) sockets, see
inet.

	inet_dist_use_interface = ip_address() - If
the host of an Erlang node has many network interfaces, this parameter
specifies which one to listen on. For the type definition of ip_address(),
see inet.

	inet_dist_listen_min = First
inet_dist_listen_max = Last
Defines the First..Last port range for the listener socket of a distributed
Erlang node.

	inet_dist_listen_options = Opts - Defines
a list of extra socket options to be used when opening the listening socket
for a distributed Erlang node. See gen_tcp:listen/2.

	inet_dist_connect_options = Opts -
Defines a list of extra socket options to be used when connecting to other
distributed Erlang nodes. See gen_tcp:connect/4.

	inet_parse_error_log = silent - If set, no log
events are issued when erroneous lines are found and skipped in the various
Inet configuration files.

	inetrc = Filename - The name (string) of an Inet user
configuration file. For details, see section
Inet Configuration in the ERTS User's Guide.

	net_setuptime = SetupTime -
SetupTime must be a positive integer or floating point number, and is
interpreted as the maximum allowed time for each network operation during
connection setup to another Erlang node. The maximum allowed value is 120.
If higher values are specified, 120 is used. Default is 7 seconds if the
variable is not specified, or if the value is incorrect (for example, not a
number).
Notice that this value does not limit the total connection setup time, but
rather each individual network operation during the connection setup and
handshake.

	net_ticker_spawn_options = Opts - Defines
a list of extra spawn options for net ticker processes. There exist one such
process for each connection to another node. A net ticker process is
responsible for supervising the connection it is associated with. These
processes also execute the distribution handshake protocol when setting up
connections. When there is a large number of distribution connections, setting
up garbage collection options can be helpful to reduce memory usage. Default
is [link, {priority, max}], and these two options cannot be changed. The
monitor and {monitor, MonitorOpts} options are not allowed and will be
dropped if present. See the documentation of the erlang:spawn_opt/4 BIF for
information about valid options. If the Opts list is not a proper list, or
containing invalid options the setup of connections will fail.
Note that the behavior described above is only true if the distribution
carrier protocol used is implemented as described in
ERTS User's Guide ➜ How to implement an Alternative Carrier for the Erlang Distribution ➜ Distribution Module
without further alterations. The implementer of the distribution carrier
protocol used, may have chosen to ignore the net_ticker_spawn_options
parameter or altered its behavior. Currently all distribution modules shipped
with OTP do, however, behave as described above.

	net_tickintensity = NetTickIntensity - Net tick
intensity specifies how many ticks to send during a
net tick time period when no other data is sent
over a connection to another node. This also determines how often to check for
data from the other node. The higher net tick intensity, the closer to the
chosen net tick time period the node will detect an unresponsive node. The net
tick intensity defaults to 4. The value of NetTickIntensity should be an
integer in the range 4..1000. If the NetTickIntensity is not an integer or
an integer less than 4, 4 will silently be used. If NetTickIntensity is
an integer larger than 1000, 1000 will silently be used.
Note
Note that all communicating nodes are expected to use the same net tick
intensity as well as the same net tick time.

Warning
Be careful not to set a too high net tick intensity, since you can overwhelm
the node with work if it is set too high.

	net_ticktime = NetTickTime - Specifies the net tick
time in seconds. This is the approximate time a connected node may be
unresponsive until it is considered down and thereby disconnected.
Net tick time together with
net tick intensity determines an interval
TickInterval = NetTickTime/NetTickIntensity. Once every TickInterval
seconds, each connected node is ticked if nothing has been sent to it during
that last TickInterval seconds. A tick is a small package sent on the
connection. A connected node is considered to be down if no ticks or payload
packages have been received during the last NetTickIntensity number of
TickInterval seconds intervals. This ensures that nodes that are not
responding, for reasons such as hardware errors, are considered to be down.
As the availability is only checked every TickInterval seconds, the actual
time T a node have been unresponsive when detected may vary between MinT
and MaxT, where:
MinT = NetTickTime - NetTickTime / NetTickIntensity
MaxT = NetTickTime + NetTickTime / NetTickIntensity
NetTickTime defaults to 60 seconds and NetTickIntensity defaults to 4.
Thus, 45 < T < 75 seconds.
Note
Notice that all communicating nodes are to have the same NetTickTime
and NetTickIntensity values specified, as it determines both the frequency
of outgoing ticks and the expected frequency of incominging ticks.

NetTickTime needs to be a multiple of NetTickIntensity. If the configured
values are not, NetTickTime will internally be rounded up to the nearest
millisecond.
net_kernel:get_net_ticktime() will,
however, report net tick time truncated to the nearest second.
Normally, a terminating node is detected immediately by the transport protocol
(like TCP/IP).

	prevent_overlapping_partitions = true | false - If enabled (true), global will
actively prevent overlapping partitions from forming when connections are lost
between nodes. This fix is enabled by default. If you are about to disable
this fix, make sure to read the
global documentation about this
fix for more important information about this.

	shutdown_timeout = integer() | infinity -
Specifies the time application_controller waits for an application to
terminate during node shutdown. If the timer expires, application_controller
brutally kills application_master of the hanging application. If this
parameter is undefined, it defaults to infinity.

	sync_nodes_mandatory = [NodeName] - Specifies
which other nodes that must be alive for this node to start properly. If
some node in the list does not start within the specified time, this node does
not start either. If this parameter is undefined, it defaults to [].

	sync_nodes_optional = [NodeName] - Specifies
which other nodes that can be alive for this node to start properly. If some
node in this list does not start within the specified time, this node starts
anyway. If this parameter is undefined, it defaults to the empty list.

	sync_nodes_timeout = integer() | infinity -
Specifies the time (in milliseconds) that this node waits for the mandatory
and optional nodes to start. If this parameter is undefined, no node
synchronization is performed. This option ensures that global is
synchronized.

	start_distribution = true | false - Starts all
distribution services, such as rpc, global, and net_kernel if the
parameter is true. This parameter is to be set to false for systems who
want to disable all distribution functionality.
Defaults to true.

	start_dist_ac = true | false - Starts the dist_ac
server if the parameter is true. This parameter is to be set to true for
systems using distributed applications.
Defaults to false. If this parameter is undefined, the server is started if
parameter distributed is set.

	start_boot_server = true | false - Starts the
boot_server if the parameter is true (see erl_boot_server). This
parameter is to be set to true in an embedded system using this service.
Defaults to false.

	boot_server_slaves = [SlaveIP] - If
configuration parameter start_boot_server is true, this parameter can be
used to initialize boot_server with a list of slave IP addresses:
SlaveIP = string() | atom | {integer(),integer(),integer(),integer()},
where 0 <= integer() <=255.
Examples of SlaveIP in atom, string, and tuple form:
'150.236.16.70', "150,236,16,70", {150,236,16,70}.
Defaults to [].

	start_disk_log = true | false - Starts the
disk_log_server if the parameter is true (see disk_log). This
parameter is to be set to true in an embedded system using this service.
Defaults to false.

	start_pg = true | false - Starts the
default pg scope server (see pg) if the parameter is true. This
parameter is to be set to true in an embedded system that uses this service.
Defaults to false.

	start_timer = true | false - Starts the timer_server
if the parameter is true (see timer). This parameter is to be set to
true in an embedded system using this service.
Defaults to false.

	shell_history = enabled | disabled | module() -
Specifies whether shell history should be logged to disk between usages of
erl (enabled), not logged at all (disabled), or a user-specified module
will be used to log shell history. This module should export
load() -> [string()] returning a list of strings to load in the shell when
it starts, and add(iodata()) -> ok. called every time new line is entered in
the shell. By default logging is disabled.

	shell_history_drop = [string()] - Specific log
lines that should not be persisted. For example ["q().", "init:stop()."]
will allow to ignore commands that shut the node down. Defaults to [].

	shell_history_file_bytes = integer() - How
many bytes the shell should remember. By default, the value is set to 512kb,
and the minimal value is 50kb.

	shell_history_path = string() - Specifies where
the shell history files will be stored. defaults to the user's cache directory
as returned by filename:basedir(user_cache, "erlang-history").

	shutdown_func = {Mod :: atom(), Func :: atom()} -
Sets a function that application_controller calls when it starts to
terminate. The function is called as Mod:Func(Reason), where Reason is the
terminate reason for application_controller, and it must return as soon as
possible for application_controller to terminate properly.

	source_search_rules = [DirRule] | [SuffixRule]
Where:
	DirRule = {ObjDirSuffix,SrcDirSuffix}
	SuffixRule = {ObjSuffix,SrcSuffix,[DirRule]}
	ObjDirSuffix = string()
	SrcDirSuffix = string()
	ObjSuffix = string()
	SrcSuffix = string()

Specifies a list of rules for use by filelib:find_file/2
filelib:find_source/2 If this is set to some other value than the empty
list, it replaces the default rules. Rules can be simple pairs of directory
suffixes, such as {"ebin", "src"}, which are used by filelib:find_file/2,
or triples specifying separate directory suffix rules depending on file name
extensions, for example [{".beam", ".erl", [{"ebin", "src"}]}, which are
used by filelib:find_source/2. Both kinds of rules can be mixed in the list.
The interpretation of ObjDirSuffix and SrcDirSuffix is as follows: if the
end of the directory name where an object is located matches ObjDirSuffix,
then the name created by replacing ObjDirSuffix with SrcDirSuffix is
expanded by calling filelib:wildcard/1, and the first regular file found
among the matches is the source file.

	standard_io_encoding = Encoding - Set whether
bytes sent or received via standard_io should be interpreted as unicode or
latin1. By default input and output is interpreted as Unicode if it is
supported on the host. With this flag you may configure the encoding on
startup.
This works similarly to
io:setopts(standard_io, {encoding, Encoding}) but is
applied before any bytes on standard_io may have been read.
Encoding is one of:
	unicode - Configure standard_io to use unicode mode.

	latin1 - Configure standard_io to use latin1 mode.

	_ - Anything other than unicode or latin1 will be ignored and the
system will configure the encoding by itself, typically unicode on modern
systems.

See
Escripts and non-interactive I/O in Unicode Usage in Erlang
for more details.

	os_cmd_shell = string() - Specifies which shell to
use when invoking system commands via os:cmd/2. By default the shell is detected
automatically.

 Deprecated Configuration Parameters

In Erlang/OTP 21.0, a new API for logging was added. The old error_logger
event manager, and event handlers running on this manager, still work, but they
are no longer used by default.
The following application configuration parameters can still be set, but they
are only used if the corresponding configuration parameters for Logger are not
set.
	error_logger - Replaced by setting the type,
and possibly file and
modes parameters of the default logger_std_h
handler. Example:
erl -kernel logger '[{handler,default,logger_std_h,#{config=>#{file=>"/tmp/erlang.log"}}}]'

	error_logger_format_depth - Replaced by setting the
depth parameter of the default handlers
formatter. Example:
erl -kernel logger '[{handler,default,logger_std_h,#{formatter=>{logger_formatter,#{legacy_header=>true,template=>[{logger_formatter,header},"\n",msg,"\n"],depth=>10}}}]'

See Backwards compatibility with error_logger
for more information.

Kernel Release Notes

This document describes the changes made to the Kernel application.

 Kernel 10.2

 Fixed Bugs and Malfunctions

	gen_sctp:peeloff/2 has been fixed to inherit socket options to the peeled off socket more like gen_tcp:accept/1, for example the options tos or tclass.
When setting SCTP options that are unsupported on the platform, some should be silently ignored, but a bug caused the option parsing to derail so the options after could bail out and cause an error instead. This has been fixed.
Own Id: OTP-19225 Aux Id: PR-8789

	Made it possible to expand help text displayed by pressing ^[h by pressing ^[h again.
Own Id: OTP-19260 Aux Id: PR-8884

	inet:getifaddrs/0,1 is improved when using
inet_backend = socket.
Own Id: OTP-19264

	Fixed logger:report/0 to mandate at least one element in the report. This fixes an issue with overlapping spec domains in all logger functions that use logger:report/0.
Own Id: OTP-19302 Aux Id: PR-8959

	Fixed deadlock on code_server. Multiple calls loading the same module with an on_load function loading call would create a deadlock.
Own Id: OTP-19305 Aux Id: PR-8744, GH-7466, GH-8510

 Improvements and New Features

	The Kernel application now recognizes the epmd_module and erl_epmd_listen_port parameters, similar to -kernel:connect_all.
Own Id: OTP-19253 Aux Id: PR-8671

	The inetrc kernel argument will now tolerate atoms again to improve compatibility with old configurations that relied on atoms working by accident.
The expected type always was, and still remains, a string.
Own Id: OTP-19280 Aux Id: GH-8899, PR-8902

	The file:io_device/0 type has been updated to clearly show the difference between a raw and cooked IoDevice.
Own Id: OTP-19301 Aux Id: PR-8956

	Erlang/OTP type specifications has been updated to eliminate overlapping domains.
Own Id: OTP-19310 Aux Id: GH-8810, GH-8821, PR-8986

	Added the kernel parameter os_cmd_shell that controls which shell should be used by os:cmd/1.
Own Id: OTP-19342 Aux Id: PR-8972

	Added logging support to io:user/0, io:standard_io/0 and io:standard_error/0. See io:setopts/2 for more details.
Own Id: OTP-19372 Aux Id: PR-8947

 Kernel 10.1.2

 Fixed Bugs and Malfunctions

	On windows the socket:recv could return with success ({ok, Data}) even though not all data had been read.
Own Id: OTP-19328

	gen_udp:send on domain local can leak inet_reply messages.
Own Id: OTP-19332 Aux Id: #8989

	Failure to create an UDP IPv6 socket when inet_backend = socket with certain IPv6 socket options.
Own Id: OTP-19357

	net:getifaddrs does not properly report the running flag on windows.
Own Id: OTP-19366 Aux Id: OTP-19061, ERIERL-1134

 Kernel 10.1.1

 Fixed Bugs and Malfunctions

	A bug has been fixed where receiving an SCTP message with gen_sctp could waste the first fragments of a message and only deliver the last fragment.
This happened with low probability when the OS signaled that the socket was ready for reading in combination with an internal time-out retry.
A bug has been fixed with a lingering time-out from after an SCTP connect that could stop the flow of incoming messages on an active gen_tcp socket.
Own Id: OTP-19235 Aux Id: ERIERL-1133, PR-8837

	An boolean option non_block_send for SCTP, has ben added to be able to achieve the old behaviour to avoid blocking send operations by passing the OS network stack error message ({error,eagain} through.
Own Id: OTP-19258 Aux Id: OTP-19061, ERIERL-1134

 Kernel 10.1

 Fixed Bugs and Malfunctions

	A faulty assertion was corrected in the prim_tty module. This assertion could trigger when invalid UTF-8 was read from stdin just as the mode was changed from unicode to latin1.
Own Id: OTP-19097 Aux Id: PR-8503

	Opening a disk_log file and combining head_func with rotate options did not work.
Own Id: OTP-19104 Aux Id: ERIERL-870

	Fixed an error info printout for erlang:is_process_alive/1 on non-local pids.
Own Id: OTP-19134 Aux Id: PR-8560

	A race in the kTLS flavour of SSL distribution has been fixed so that inet_drv.c doesn't read ahead too much data, which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

	Fixed a deadlock when an application crashes during startup and log messages were sent to standard out. Logger would fail to print the messages to standard out and instead print them to standard error.
Own Id: OTP-19205

	The -proto_dist init parameter will no longer be ignored when specified multiple times. It will now log a warning and use the first specified value.
Own Id: OTP-19208 Aux Id: PR-8672

	Corrected socket:ioctl for genaddr (SIOCGENADDR).
Own Id: OTP-19216

 Improvements and New Features

	Added functions getservbyname and getservbyport to the net module.
Own Id: OTP-19101 Aux Id: OTP-18835

	Introduced enet | esock variants of inet functions, either when called with sockets,
with explicit inet_backend config or with the e inet_backend kernel config option.
Own Id: OTP-19132 Aux Id: OTP-19101

	The function socket:i/0 now uses the net module (instead of the inet module) for service translation.
Own Id: OTP-19138 Aux Id: OTP-19101

	A boolean option read_ahead has been implemented for gen_tcp, default true, to facilitate not reading past (caching data) the end of a packet. In particular, for kTLS, caching data could read in data that was supposed to be decrypted by the platform's network stack, before crypto parameters could be activated.
Own Id: OTP-19199 Aux Id: OTP-19175, GH-8561, GH-8690, GH-8785

 Kernel 10.0.1

 Improvements and New Features

	Polish the logger documentation.
Own Id: OTP-19118 Aux Id: PR-8534

 Kernel 10.0

 Fixed Bugs and Malfunctions

	Fixed a crash when calling file:delete/2 with an empty option list.
Own Id: OTP-18590 Aux Id: PR-7220

	New functions have been added to the undocumented module m:inet_dns that take a flag to specify if encode/decode is for mDNS. This affects how CLASS values in the private range, with the top bit set, are handled.
Own Id: OTP-18878 Aux Id: GH-7718, OTP-17734

	The error information for erlang:phash/2 has been corrected.
Own Id: OTP-18904 Aux Id: PR-7960

	get_until requests using the I/O protocol now correctly return a binary or list when eof is the last item returned by the callback.
Own Id: OTP-18930 Aux Id: PR-7993, GH-4992

	Calling logger:add_handlers/1 with config option now works.
Own Id: OTP-18954 Aux Id: GH-8061, PR-8076

	The code:del_path/1 function now also works on paths added through -pa, -pz , -path and the boot script.
Own Id: OTP-18959 Aux Id: GH-6692, PR-7697

	A call to socket:[recv|recvfrom|recvmsg]/* with Timeout = 0 on Windows could cause a (case clause) crash if data is immediately available.
Own Id: OTP-19063 Aux Id: OTP-18835

	Improve heuristic for when a characters is wide in the shell for systems with old libc versions.
Own Id: OTP-19087 Aux Id: PR-8382

	Fix reading a line when reading from io:user/0 to not consider \r without \n to be a new line when erl is started with -noshell.
Own Id: OTP-19088 Aux Id: PR-8396, GH-8360

 Improvements and New Features

	Added file:read_file/2 with a raw option for reading files without going through the file server.
Own Id: OTP-18589 Aux Id: PR-7220

	The undocumented Erlang DNS resolver library (inet_dns and inet_res) has been augmented to handle IXFR, NOTIFY, UPDATE and TSIG records. With this some bug fixes and code cleanup has been done, and the resolver used in the test suite has been changed to Knot DNS. See the source code.
Kudos to Alexander Clouter that did almost all the work!
Own Id: OTP-18713 Aux Id: PR-6985, GH-6985

	The ebin directories for escripts are now cached.
Own Id: OTP-18778 Aux Id: PR-7556

	-callback attributes haven been added to application, logger_handler, and logger_formatter.
Own Id: OTP-18795 Aux Id: PR-7703

	Progress reports from before logger is started are now logged when log level is set to debug.
Own Id: OTP-18807 Aux Id: PR-7732 ERIERL-985

	The code:where_is_file/2 and
code:which/1 functions now check for existence of the file directly instead of listing the content of each directory in the code path.
Own Id: OTP-18816 Aux Id: PR-7711

	Type specs has been added to the logger:Level/1,2,3 functions.
Own Id: OTP-18820 Aux Id: PR-7779

	For inet_backend = socket, setting the active socket option alone, to once, true or N has been optimized, as well as the corresponding data delivery.
Own Id: OTP-18835

	New functions socket:sendv/* for sending I/O vectors have been added.
Own Id: OTP-18845

	The shell now pages long output from the documentation help command (h(Module)), auto completions and the search command.
Own Id: OTP-18846 Aux Id: PR-7845

	Native coverage support has been implemented in the JIT. It will automatically be used by the cover tool to reduce the execution overhead when running cover-compiled code.
There are also new APIs to support native coverage without using the cover tool.
To instrument code for native coverage it must be compiled with the line_coverage option.
To enable native coverage in the runtime system, start it like so:
$ erl +JPcover true
There are also the following new functions for supporting native coverage:
	code:coverage_support/0
	code:get_coverage/2
	code:reset_coverage/1
	code:get_coverage_mode/0
	code:get_coverage_mode/1
	code:set_coverage_mode/1

Own Id: OTP-18856 Aux Id: PR-7856

	Optimized code loading by moving certain operations from the code server to the caller.
Own Id: OTP-18941 Aux Id: PR-7981

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

	Application startup has been optimized by removing an intermediary process.
Own Id: OTP-18963 Aux Id: PR-8042

	The existing experimental support for archive files will be changed in a future release. The support for having an archive in an escript will remain, but the support for using archives in a release will either become more limited or completely removed.
As of Erlang/OTP 27, the function code:lib_dir/2, the -code_path_choice flag, and using erl_prim_loader for reading members of an archive are deprecated.
To remain compatible with future version of Erlang/OTP escript scripts that need to retrieve data files from its archive should use escript:extract/2 instead of erl_prim_loader and code:lib_dir/2.
 POTENTIAL INCOMPATIBILITY
Own Id: OTP-18966 Aux Id: PR-8091

	The undocumented and deprecated file:pid2name function has been removed.
Own Id: OTP-18967 Aux Id: PR-8092

	There is a new module trace in Kernel providing the same trace functionality as erlang:trace/3 and erlang:trace_pattern/3, but with the addition of dynamic isolated trace sessions.
Own Id: OTP-18980

	Error logging has been improved when the io:standard_io/0 reader and/or writer terminates with an error.
Own Id: OTP-18989 Aux Id: PR-8103

	inet_backend = socket has been optimized and reworked to be more compatible with the original inet_backend = inet.
Own Id: OTP-19004 Aux Id: OTP-18835

	Add an simple example (echo server))to the socket users guide.
Own Id: OTP-19042

	inet:i/0,1,2 has been improved to allow port numbers to be shown explicitly.
Own Id: OTP-19053 Aux Id: #6724

	The socket documentation has been reworked, and due to
that a few details were fixed:
	socket:is_supported/1 now returns true for example for protocols
that is a "category", not an item.
	socket:cancel_monitor/1 no longer badargs for a monitor that was set by
another process, instead it returns false as for other unknown
reference()s.

Own Id: OTP-19054

	Add stdin, stdout and stderr keys to io:getopts/1 on io:standard_io/0 to indicate if the respective I/O device is backed by a terminal.
Own Id: OTP-19089 Aux Id: PR-8396

 Kernel 9.2.4.4

 Fixed Bugs and Malfunctions

	gen_udp:send on domain local can leak inet_reply messages.
Own Id: OTP-19332 Aux Id: #8989

	Failure to create an UDP IPv6 socket when inet_backend = socket with certain IPv6 socket options.
Own Id: OTP-19357

	net:getifaddrs does not properly report the running flag on windows.
Own Id: OTP-19366 Aux Id: OTP-19061, ERIERL-1134

 Kernel 9.2.4.3

 Fixed Bugs and Malfunctions

	A bug has been fixed where receiving an SCTP message with `gen_sctp` could waste the first fragments of a message and only deliver the last fragment.
This happened with low probability when the OS signaled that the socket was ready for reading in combination with an internal time-out retry.
A bug has been fixed with a lingering time-out from after an SCTP connect that could stop the flow of incoming messages on an active `gen_tcp` socket.
Own Id: OTP-19235 Aux Id: ERIERL-1133, PR-8837

	An boolean option `non_block_send` for SCTP, has ben added to be able to achieve the old behaviour to avoid blocking send operations by passing the OS network stack error message (`{error,eagain}` through.
Own Id: OTP-19258 Aux Id: OTP-19061, ERIERL-1134

 Kernel 9.2.4.2

 Fixed Bugs and Malfunctions

	A race in the kTLS flavour of SSL distribution has been fixed so inet_drv.c doesn't read ahead too much data which could cause the kTLS encryption to be activated too late when some encrypted data had already been read into the inet_drv.c buffer as unencrypted.
Own Id: OTP-19175 Aux Id: GH-8561, PR-8690

	Fix a deadlock when an application crashes during startup and log messages were sent to standard out. Logger would fail to print the messages to standard out and instead print them to standard error.
Own Id: OTP-19205

	Add the stdlib application parameters shell_redraw_prompt_on_output which when set to false disables redrawing of the shell prompt if any other output is done.
Own Id: OTP-19213 Aux Id: PR-8763 ERIERL-1108

 Kernel 9.2.4.1

 Fixed Bugs and Malfunctions

	A call to socket:[recv|recvfrom|recvmsg]/* with Timeout = 0 on Windows could cause a (case clause) crash if data is immediately available.
Own Id: OTP-19063 Aux Id: OTP-18835

	Open a disk_log file and combining head_func with rotate options did not work.
Own Id: OTP-19104 Aux Id: ERIERL-870

 Kernel 9.2.4

 Fixed Bugs and Malfunctions

	Fix the shell Job Control Mode to not crash when typing TAB or CTRL+R.
Own Id: OTP-19072 Aux Id: PR-8391

	Fix calls to blocking application APIs to throw an exception with reason terminating if called when the system is terminating.
This is done in order to avoid deadlocks during shutdown or restart.
Own Id: OTP-19078 Aux Id: PR-8422

 Kernel 9.2.3

 Fixed Bugs and Malfunctions

	When using IPv6, classic gen_udp failed to add (group) membership (drop was used instead).
Own Id: OTP-19049 Aux Id: #8176

	The check in inet_res of the RD bit has been relaxed slightly.
Own Id: OTP-19056 Aux Id: PR-8312, OTP-17323

 Kernel 9.2.2

 Fixed Bugs and Malfunctions

	Fix performance bug when using io:fread to read from standard_io. This regression was introduced in OTP 26.0.
Own Id: OTP-18910 Aux Id: PR-7933 GH-7924

	A bug in the code server could cause it to crash in some concurrent scenarios. This bug was introduced in 26.1.
Own Id: OTP-18948 Aux Id: PR-8046

	Fixed gen_udp:open/2 type spec to include already supported module socket address types.
Own Id: OTP-18990 Aux Id: GH-8158

	Fix reading of password for ssh client when in user_interactive mode.
Own Id: OTP-19007 Aux Id: ERIERL-1049

 Kernel 9.2.1

 Fixed Bugs and Malfunctions

	Fix group (that is the shell) to properly handle when an get_until callback function returned {done, eof, []} when an eof was detected.
Own Id: OTP-18901

 Kernel 9.2

 Fixed Bugs and Malfunctions

	For inet_backend = socket, an unexpected receive error such as etimedout
caused the receiving state machine server to crash. This bug has now been
fixed.
Own Id: OTP-18749 Aux Id: GH-7608

	Fix bug where reading using file from a unicode enabled standard_io,
standard_error or any other group backed device would result in incorrect
values being returned or a crash.
Now instead a no_translation error is returned to the caller when unicode data
is read using file. See
Using Unicode
in the STDLIB User's Guide for more details on how to correctly read from
standard_io.
Own Id: OTP-18800 Aux Id: PR-7714 GH-7591

	The native resolver interface module has gotten a rewrite of its ETS table
handling to minimize term copying, and also to move the handling of client
time-outs to the clients, which helps the native resolver name server from
digging itself into a tar pit when heavily loaded.
Own Id: OTP-18812 Aux Id: ERIERL-997

	Replaced unintentional Erlang Public License 1.1 headers in some files with
the intended Apache License 2.0 header.
Own Id: OTP-18815 Aux Id: PR-7780

	Fix bug in pg if a client process both monitored a group/scope and joined a
group. The termination of such process resulted in crash of the pg server
process.
Own Id: OTP-18833 Aux Id: GH-7625, PR-7659

	Fix crash when using file:consult and the underlying file read returns an
error while reading.
Own Id: OTP-18873 Aux Id: PR-7831

	Corrected gen_tcp_socket listen option handling.
Own Id: OTP-18883 Aux Id: #7764

 Improvements and New Features

	Add Windows support for DGRAM socket connect.
Own Id: OTP-18762

	Document the, previously opaque, types select_tag() and completion_tag().
Own Id: OTP-18818 Aux Id: #7337

 Kernel 9.1

 Fixed Bugs and Malfunctions

	Fixed an issue with truncated crash slogans on failed emulator start.
Own Id: OTP-18623 Aux Id: GH-7344

	Fix shell:start_interactive function specification.
Own Id: OTP-18628 Aux Id: GH-7280

	Fix code:get_doc/1 to return missing, when it can't find erts instead of
crashing.
Own Id: OTP-18654 Aux Id: PR-7404

	Function socket:close/1 could cause a VM crash on Windows.
Own Id: OTP-18669 Aux Id: OTP-18029

	Fix deadlock when erl.exe is used as part of a pipe on Windows and trying to
set the encoding of the standard_io device.
Own Id: OTP-18675 Aux Id: PR-7473 GH-7459

	Expanded the documentation about how to use the standard_io,
standard_error and user I/O devices.
Added the types io:standard_io/0,
io:standard:error/0 and io:user/0.
Own Id: OTP-18676 Aux Id: PR-7473 GH-7459

	Fix logger's overload protection mechanism to only fetch memory used by
messages when needed.
Own Id: OTP-18677 Aux Id: PR-7418 GH-7417

	Fixed a number of socket-related issues causing incompatibilities with gen_tcp
and gen_udp respectively.
Own Id: OTP-18685

	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

	The DNS RR cache used by `inet_res` has been fixed to preserve insert order,
which is beneficial when the DNS server returns RRs in some specific order for
e.g load balancing purposes.
Own Id: OTP-18731 Aux Id: GH-7577, PR-7578

	The options `reuseport`, `reuseport_lb` and `exclusiveaddruse` were
accidentally not allowed for e.g `gen_udp:open/1,2`, which has now been
corrected.
Own Id: OTP-18734 Aux Id: OTP-18344, PR-6522, GH-6461, GH-7569

	gen_udp:recv/* for Unix Domain Socket in binary mode and passive mode has
been fixed to not crash.
Own Id: OTP-18747 Aux Id: GH-7605

	Fixed issue where cursor would not be placed at the end of the expression when
navigating shell history.
Own Id: OTP-18757 Aux Id: PR-7631

 Improvements and New Features

	Update gen_tcp_socket and gen_udp_socket to handle 'completion' (socket on
Windows).
Own Id: OTP-18586 Aux Id: OTP-18029

	Add support for Unix Domain Sockets (only for STREAM sockets) on Windows for
'socket'.
Own Id: OTP-18611 Aux Id: OTP-18029, #5024

	Add basic support for socket ioctl on Windows.
Own Id: OTP-18660

	The file:location/0 type is now exported.
Own Id: OTP-18681

	Add support for (Windows) socket option exclusiveaddruse.
Own Id: OTP-18686

	[socket] Add support for the 'nopush' option.
Own Id: OTP-18687

	Add support for socket option 'BSP STATE'.
Own Id: OTP-18693

	Add tcp socket options 'keepcnt', 'keepidle' and 'keepintvl'.
Own Id: OTP-18698

	Add support for misc (Windows) socket options ('max_msg_size' and 'maxdg').
Own Id: OTP-18710

	The keyboard shortcuts for the shell are now configurable.
Own Id: OTP-18754 Aux Id: PR-7604 PR-7647

	Optimized code_server to reduce repeated work when loading the same module
concurrently.
Own Id: OTP-18755 Aux Id: PR-7503

 Kernel 9.0.2

 Fixed Bugs and Malfunctions

	Fix bug where when you entered Alt+Enter in the terminal, the cursor would
move to the last line, instead of moving to the next line.
Own Id: OTP-18580 Aux Id: PR-7242

	Fix so that the shell does not crash on startup when termcap is not available.
Own Id: OTP-18624 Aux Id: GH-7296

	Multiple socket:accept calls issue. When making multiple accept calls, only
the last call is active.
Own Id: OTP-18635 Aux Id: #7328

	Fix the shell to ignore terminal delay when the terminal capabilities report
that they should be used.
Own Id: OTP-18636 Aux Id: PR-7352 GH-7308

	Fix "oldshell" to echo characters while typing on Windows.
Own Id: OTP-18637 Aux Id: PR-7359 GH-7324

	Fix eof handling when reading from stdin when erlang is started using
-noshell.
Own Id: OTP-18640 Aux Id: PR-7384 GH-7368 GH-7286 GH-6881

	On Windows, a call to the function socket:close, when there are waiting active
calls to read, write or accept functions, could hang.
Own Id: OTP-18646

	Fix issues when reading or configuring standard_io on Windows when erl.exe
is started using -noshell flag.
Own Id: OTP-18649 Aux Id: GH-7261 PR-7400

	gen_udp:connect with inet_backend = socket fails when the Address is a
hostname (string or atom).
Own Id: OTP-18650

	Fixed problem which would cause shell to crash if particular escape sequence
was written to stdout.
Own Id: OTP-18651 Aux Id: PR-7242

	Fixed problem where output would disappear if it was received after a prompt
was written in the shell.
Own Id: OTP-18652 Aux Id: PR-7242

	Fix a crash where the location of erts could not be found in rebar3 dev
builds.
Own Id: OTP-18656 Aux Id: PR-7404 GH-7390

	Introduce the KERNEL application parameter standard_io_encoding that can be
used to set the default encoding for standard_io. This option needs to be set
to latin1 if the application wants to treat all input data as bytes rather
than utf-8 encoded characters.
Own Id: OTP-18657 Aux Id: GH-7230 PR-7384

 Kernel 9.0.1

 Fixed Bugs and Malfunctions

	The POSIX error exdev was sometimes incorrectly described as "cross domain
link" in some error messages.
Own Id: OTP-18578 Aux Id: GH-7213

	Corrected the socket send function description (send with Timeout = nowait).
The send function(s) could not return {ok, {RestData, SelectInfo}}
Own Id: OTP-18584 Aux Id: #7238

 Kernel 9.0

 Fixed Bugs and Malfunctions

	Fixed a bug where duplicate keys were allowed in the .app file of an
application. Duplicate keys are now rejected and the application will not
start if they exist.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18210 Aux Id: GH-5877 PR-5878

	Fix inconsistent handling in logger_formatter of the branched values in
conditional branches. For example using msg in a conditional branch would
not be formatted as it should before this fix.
Own Id: OTP-18225 Aux Id: PR-6036

	Fix the logger_std_h handler to log to standard_error if logging to
standard_io fails for any reason.
Own Id: OTP-18226 Aux Id: PR-6253

	Fix the TLS distribution to work when starting Erlang in embedded mode and a
connection is done before kernel is fully started.
Own Id: OTP-18248 Aux Id: PR-6227 GH-6085

	erl -remsh has been improved to provide better error reasons and work when
using a shell without terminal support (that is an "oldshell").
Own Id: OTP-18271 Aux Id: PR-6279

	Fix logging of log events generated before kernel is started to not fail if
the code for formatting those log messaged have not yet been loaded.
Own Id: OTP-18286 Aux Id: PR-5955

	proc_lib:start*/* has become synchronous when the started process fails.
This requires that a failing process use a new function
proc_lib:init_fail/2,3, or exits, to indicate failure. All OTP behaviours
have been fixed to do this.
All these start functions now consume the 'EXIT' message from a process link
for all error returns. Previously it was only the start_link/* functions
that did this, and only when the started function exited, not when it used
init_ack/1,2 or init_fail/2,3 to create the return value.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18471 Aux Id: GH-6339, PR-6843

	Fixed a bug where file:read(standard_io, ...) unexpectedly returned eof in
binary mode.
Own Id: OTP-18486 Aux Id: PR-6881

	Return type for seq_trace:get_token/1 fixed.
Own Id: OTP-18528 Aux Id: PR-7009

	Looking up, connecting to and sending to a host with an empty name is now
handled by trying to look up the address of the root domain, which fails.
Previously some of these operations caused an internal exception, which
contradicted type specifications.
Own Id: OTP-18543 Aux Id: GH-6353

	Replaced a regex with a special case handling of ANSI Select Graphic Rendition
escape characters, to speed up io output that make use of these escape
sequences.
Own Id: OTP-18547 Aux Id: PR-7092

 Improvements and New Features

	The Erlang shell has been improved to support the following features:
	Auto-complete variables, record names, record field names, map keys,
function parameter types and filenames.
	Open external editor in the shell (with C-o) to edit the current expression
in an editor.
	Support defining records (with types), functions and function typespecs, and
custom types in the shell.
	Do not save pager commands, and input to io:getline in history.

Own Id: OTP-14835 Aux Id: PR-5924

	The TTY/terminal subsystem has been rewritten by moving more code to Erlang
from the old linked-in driver and implementing all the I/O primitives needed
in a NIF instead.
On Unix platforms the user should not notice a lot of difference, besides
better handling of unicode characters and fixing of some long standing bugs.
Windows users will notice that erl.exe has the same functionality as a normal
Unix shell and that werl.exe has been removed and replaced with a symlink to
erl.exe. This makes the Windows Erlang terminal experience identical to that
of Unix.
The re-write brings with it a number of bug fixes and feature additions:
	The TTY is now reset when Erlang exits, fixing zsh to not break when
terminating an Erlang session.
	standard_error now uses the same unicode mode as standard_io.
	Hitting backspace when searching the shell history with an empty search
string no longer breaks the shell.
	Tab expansion now works on remote nodes started using the JCL interface.
	It is now possible to configure the shell slogan and the session slogans
(that is the texts that appear when you start an Erlang shell). See the
kernel documentation for more details.
	Added shell:start_interactive for starting the interactive shell from a
non-interactive Erlang session (for example an escript).
	On Windows, when starting in detached mode the standard handler are now set
to nul devices instead of being unset.
	Standard I/O now always defaults to unicode mode if supported. Previously
the default was latin1 if the runtime system had been started with
-oldshell or -noshell (for example in an escript). To send raw bytes
over standard out, one now explicitly has to specify
io:setopts(standard_io, [{encoding, latin1}]).

* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17932 Aux Id: PR-6144 GH-3150 GH-3390 GH-4343 GH-4225

	Add support for socket on Windows.
	Pre release status.
	Error codes not finalized.
	No explicit support for Windows specific options (socket options, flags for
read and write).
	New async api for Windows (completion). See the Asynchronous calls chapter
in the (Socket Usage) Users Guide.
	To ensure platform independence, gentcp and gen_udp is _intended to be
used (not yet updated).

Own Id: OTP-18029

	As announced since the release of OTP 24, support for:
	version 4 node container types in the external term format are now
mandatory. That is, references supporting up to 5 32-bit integer
identifiers, and process and port identifiers with support for 64-bit data
storage. The distribution flag
DFLAG_V4_NC is therefor now
also mandatory. OTP has since OTP 24 supported this. Also note that the
external format produced by term_to_binary() and term_to_iovec() will
unconditionally produce pids, ports, and references supporting this larger
format.
	the new link protocol
introduced in OTP 23.3 is now mandatory. The distribution flag
DFLAG_UNLINK_ID is
therefor now also mandatory.

Due to the above, OTP 26 nodes will refuse to connect to OTP nodes from
releases prior to OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18140 Aux Id: PR-6072

	Support for Kernel TLS (kTLS), has been added to the SSL application, for TLS
distribution (-proto_dist inet_tls), the SSL option {ktls, true}. Using
this for general SSL sockets is uncomfortable, undocumented and not
recommended since it requires very platform dependent raw options.
This, for now, only works for some not too old Linux distributions. Roughly, a
kernel 5.2.0 or later with support for UserLand Protocols and the kernel
module tls is required.
Own Id: OTP-18235 Aux Id: PR-6104, PR-5840

	Add code:get_doc/2 which adds support to fetch documentation skeletons of
functions using debug_info chunks instead of eep48 doc chunks.
Own Id: OTP-18261 Aux Id: PR-5924

	The Erlang shell's auto-completion when typing tab has been changed to
happen after the editing current line instead of before it.
This behaviour can be configured using a the shell_expand_location STDLIB
configuration parameter.
Own Id: OTP-18278 Aux Id: PR-6260

	Typing Ctrl+L in a shell now clears the screen and redraws the current line
instead of only redrawing the current line. To only redraw the current line,
you must now type Alt+L. This brings the behaviour of Ctrl+L closer to how
bash and other shells work.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18285 Aux Id: PR-6262

	gen_server optimized by caching callback functions
Own Id: OTP-18305 Aux Id: PR-5831

	Prepare the pg communication protocol for upgrade. The plan is for OTP-28
nodes to be able to use an upgraded pg protocol while still being able to
talk with OTP 26 nodes.
Own Id: OTP-18327 Aux Id: PR-6433

	New disk_log log type rotate, where the log files are compressed upon
rotation.
Own Id: OTP-18331 Aux Id: ERIERL-870

	The following inet:setopts/2 options have been introduced:
	reuseport - Reuse of local port. Load
balancing may or may not be provided depending on underlying OS.

	reuseport_lb - Reuse of local port.
Load balancing provided.

	exclusiveaddruse - Exclusive
address/port usage on Windows. This socket option is Windows specific and
will silently be ignored on other systems.

The behavior of setting reuseaddr on Windows
have changed in a backwards incompatible way. The underlying SO_REUSEADDR
socket option is now only set if both the reusaddr and the reuseport
inet options have been set. This since the underlying SO_REUSEADDR socket
option on Windows behaves similar to how BSD behaves if both the underlying
socket options SO_REUSEADDR and SO_REUSEPORT have been set. See the
documentation of the reuseaddr option for more information.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18344 Aux Id: PR-6522, PR-6944, OTP-18324, PR-6481, GH-6461

	Replace size/1 with either tuple_size/1 or byte_size/1
The size/1 BIF is not optimized by the JIT, and its use can
result in worse types for Dialyzer.
When one knows that the value being tested must be a tuple,
tuple_size/1 should always be preferred.
When one knows that the value being tested must be a binary,
byte_size/1 should be preferred. However,
byte_size/1 also accepts a bitstring (rounding up size to a
whole number of bytes), so one must make sure that the call to byte_size/ is
preceded by a call to is_binary/1 to ensure that bitstrings
are rejected. Note that the compiler removes redundant calls to
is_binary/1, so if one is not sure whether previous code
had made sure that the argument is a binary, it does not harm to add an
is_binary/1 test immediately before the call to
byte_size/1.
Own Id: OTP-18405 Aux Id:
GH-6672,PR-6702,PR-6768,PR-6700,PR-6769,PR-6812,PR-6814

	The function file:pid2name/1 is deprecated and will be removed in
Erlang/OTP 27.
Own Id: OTP-18419

	The modules Erlang DNS resolver inet_res and helper modules have been
updated for RFC6891; to handle OPT RR with DNSSEC OK (DO) bit.
Own Id: OTP-18442 Aux Id: PR-6786, GH-6606

	Introduced application:get_supervisor/1.
Own Id: OTP-18444 Aux Id: PR-6035

	Handling of on_load modules during boot has been improved by adding an extra
step in the boot order for embedded mode that runs all on_load handlers,
instead of relying on explicit invocation of them, later, when the kernel
supervision tree starts.
This is mostly a code improvement and OTP internal simplification to avoid
future bugs and to simplify code maintenance.
Own Id: OTP-18447

	Reduce contention on the code_server by doing the code preparation on the
client.
Own Id: OTP-18448 Aux Id: PR-6736

	Added a mode to ensure_all_loaded, to start children application and their
dependencies concurrently.
Own Id: OTP-18451 Aux Id: PR-6737

	Cache OTP boot code paths, to limit how many folders that are being accessed
during a module lookup. Can be disabled with -cache_boot_path false. OTP boot
code paths consists of ERL_LIB environment variables. The various otp/*/ebin
folders. And the {path, ...} clauses in the init script.
Own Id: OTP-18452 Aux Id: PR-6729

	Erlang distribution code in Kernel and SSL has been refactored a bit to
facilitate debugging and re-usability, which shouldn't have any noticeable
effects on behaviour or performance.
Own Id: OTP-18456

	Add cache attribute to code path apis.
Added an optional cache/nocache argument to all code:add_path,
code:set_path, and code:replace_path* functions. These functions will then
avoid doing file-accesses if they are cached. Cache can be cleared with
code:clear_cache/0. Added code:del_paths/1 to make it easier to clear multiple
paths.
Own Id: OTP-18466 Aux Id: PR-6832

	Deprecates dbg:stop_clear/0 because it is simply a function alias to
dbg:stop/0
Own Id: OTP-18478 Aux Id: GH-6903

	Improvements to code:ensure_modules_loaded/1: Previously it would prepare
modules and then abandon references to said modules if they had on_load
callbacks. This pull request makes it so they keep the references around and
then serially load them without having to fetch the object code and prepare
them again.
Own Id: OTP-18484 Aux Id: PR-6844

	The internal DNS resolver has been updated to handle DNS LOC RR:s (RFC 1876).
This is an undocumented module, although still used by power users. See the
source code.
Own Id: OTP-18510 Aux Id: GH-6098, PR-6982

	Reduced memory consumption in global when informing other nodes about lost
connections.
Own Id: OTP-18521 Aux Id: PR-7025

	The net_kernel, global, and global_group servers now have
fully asynchronous distributed signaling
enabled all the time which prevents them from ever getting blocked on send of
distributed signals.
Documentation about blocking distributed signals has also been improved.
Own Id: OTP-18533 Aux Id: PR-7061

	Allow IPv6 addresses as host in http packets decoded by
erlang:decode_packet/3 and gen_tcp packet option. The IPv6 address should
be enclosed within [] according to RFC2732.
Own Id: OTP-18540 Aux Id: PR-6900

	Remove deprecated functions in OTP-26
Own Id: OTP-18542

	Removed code:is_module_native/1 since HiPE has been removed. It has since
OTP 24 been deprecated and scheduled for removal in OTP 26.
Removed code:rehash/0 since the code path feature no longer is present. It
has since OTP 19 been deprecated and has since OTP 24 been scheduled for
removal in OTP 26.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18551 Aux Id: PR-7106

	Added support for multiple line expressions and navigation in the shell. Added
new keybindings:
	navigate up (ctrl+up)/(alt+up)
	navigate down (ctrl+down)/(alt+down)
	insert newline in middle of line (alt+enter)
	navigate top (alt+<)/(alt+shift+up)
	navigate bottom (alt+>)/(alt+shift+down)
	clear current expression (alt+c)
	cancel search (alt+c)
	opening editor on mac (option+o)/(alt+o)

Modifies the prompt for new lines to make it clearer that the prompt has
entered multi-line mode. Supports terminal with small window size, recommend
not go lower than 7 rows and 40 columns. Modifies the search prompt to support
multi-line statements. Redraw the prompt after continuing from JCL menu.
Own Id: OTP-18575 Aux Id: PR-7169

 Kernel 8.5.4.3

 Fixed Bugs and Malfunctions

	Fixed gen_udp:open/2 type spec to include already supported module socket address types.
Own Id: OTP-19050 Aux Id: OTP-18990

 Kernel 8.5.4.2

 Fixed Bugs and Malfunctions

	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

 Kernel 8.5.4.1

 Fixed Bugs and Malfunctions

	Multiple socket:accept calls issue. When making multiple accept calls, only
the last call is active.
Own Id: OTP-18635 Aux Id: #7328

	gen_udp:connect with inet_backend = socket fails when the Address is a
hostname (string or atom).
Own Id: OTP-18650

 Kernel 8.5.4

 Fixed Bugs and Malfunctions

	Fixed a bug on Windows where file:read_file_info/1 would fail for files with
corrupt metadata.
Own Id: OTP-18348 Aux Id: GH-6356

	Accept connection setup from OTP 23 and 24 nodes that are not using epmd.
Own Id: OTP-18404 Aux Id: GH-6595, PR-6625

 Kernel 8.5.3

 Fixed Bugs and Malfunctions

	The tcp connect option 'bind_to_device' could not be used with inet_backend =
'socket'. 'inet' requires value type binarry() and 'socket' requires value
type 'string()'.
Own Id: OTP-18357 Aux Id: #6509

	Minor issue processing options when calling gen_tcp:connect with a sockaddr()
and inet_backend = socket.
Own Id: OTP-18358 Aux Id: #6528

 Kernel 8.5.2

 Fixed Bugs and Malfunctions

	Fixed shutdown crash in gen_tcp socket backend, when the other end closed the
socket.
Own Id: OTP-18270 Aux Id: #6331

	erl_tar can now read gzip-compressed tar files that are padded. There is a
new option compressed_one for file:open/2 that will read a single member
from a gzip file,
Own Id: OTP-18289 Aux Id: PR-6343

	Fix os:cmd to not translate all exceptions thrown to badarg. For example
emfile from erlang:open_port was translated to badarg.
This bug has existed since Erlang/OTP 24.
Own Id: OTP-18291 Aux Id: PR-6382

	Spec for function net:if_names/0 incorrect
Own Id: OTP-18296 Aux Id: OTP-16464

	Missing ctrl option name transation for TOS and TTL (on FreeBSD) when using
gen_udp with the 'socket' inet_backend.
Own Id: OTP-18315

	gen_udp:open/2 with option(s) add_membership or drop_membership would drop
earlier options.
Own Id: OTP-18323 Aux Id: #6476

	The inet:setopts/2 {reuseaddr, true} option will now be ignored on Windows
unless the socket is an UDP socket. For more information see the documentation
of the reuseaddr option part of the documentation of inet:setopts/2.
Prior to OTP 25 the {reuseaddr, true} option was ignored for all sockets on
Windows, but as of OTP 25.0 this was changed so that it was not ignored for
any sockets.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18324 Aux Id: GH-6461, PR-6481

 Improvements and New Features

	The distribution socket option handling in inet_tcp_dist has been cleaned up
to clarify which were mandatory and which just had default values.
Own Id: OTP-18293

	Improve warning message format for gen_tcp_socket.
Own Id: OTP-18317

 Kernel 8.5.1

 Fixed Bugs and Malfunctions

	Listen sockets created with the socket module, leaked (erlang-) monitors.
Own Id: OTP-18240 Aux Id: #6285

	peer nodes failed to halt when the process supervising the control
connection crashed. When an alternative control connection was used, this
supervision process also quite frequently crashed when the peer node was
stopped by the node that started it which caused the peer node to linger
without ever halting.
Own Id: OTP-18249 Aux Id: PR-6301

 Kernel 8.5

 Fixed Bugs and Malfunctions

	Fixed inconsistency bugs in global due to nodeup/nodedown messages not
being delivered before/after traffic over connections. Also fixed various
other inconsistency bugs and deadlocks in both global_group and global.
As building blocks for these fixes, a new BIF erlang:nodes/2 has been
introduced and net_kernel:monitor_nodes/2 has been extended.
The -hidden and
-connect_all command line arguments did
not work if multiple instances were present on the command line which has been
fixed. The new kernel parameter connect_all has
also been introduced in order to replace the -connect_all command line
argument.
Own Id: OTP-17934 Aux Id: PR-6007

	Fixed IPv6 multicast_if and membership socket options.
Own Id: OTP-18091 Aux Id: #5789

	Fixed issue with inet:getifaddrs hanging on pure IPv6 Windows
Own Id: OTP-18102 Aux Id: #5904

	The type specifications for inet:getopts/2 and inet:setopts/2 have been
corrected regarding SCTP options.
Own Id: OTP-18115 Aux Id: PR-5939

	The type specifications for inet:parse_* have been tightened.
Own Id: OTP-18121 Aux Id: PR-5972

	Fix gen_tcp:connect/3 spec to include the inet_backend option.
Own Id: OTP-18171 Aux Id: PR-6131

	Fix bug where using a binary as the format when calling
logger:log(Level, Format, Args) (or any other logging function) would cause
a crash or incorrect logging.
Own Id: OTP-18229 Aux Id: PR-6212

 Improvements and New Features

	Add rudimentary debug feature (option) for the inet-driver based sockets, such
as gen_tcp and gen_udp.
Own Id: OTP-18032

	Introduced the hidden and dist_listen options to net_kernel:start/2.
Also documented the -dist_listen command
line argument which was erroneously documented as a kernel parameter and not
as a command line argument.
Own Id: OTP-18107 Aux Id: PR-6009

	Scope and group monitoring have been introduced in pg. For more
information see the documentation of
pg:monitor_scope(),
pg:monitor(), and pg:demonitor().
Own Id: OTP-18163 Aux Id: PR-6058, PR-6275

	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

 Kernel 8.4.2

 Fixed Bugs and Malfunctions

	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

 Kernel 8.4.1

 Fixed Bugs and Malfunctions

	The DNS resolver inet_res has been fixed to ignore trailing dot difference
in the request domain between the sent request and the received response, when
validating a response.
Own Id: OTP-18112 Aux Id: ERIERL-811

	A bug in inet_res has been fixed where a missing internal {ok,_} wrapper
caused inet_res:resolve/* to return a calculated host name instead of an
{ok,Msg} tuple, when resolving an IP address or a host name that is an IP
address string.
Own Id: OTP-18122 Aux Id: GH-6015, PR-6020

	The erlang:is_alive() BIF could return true before configured distribution
service was available. This bug was introduced in OTP 25.0 ERTS version 13.0.
The erlang:monitor_node() and erlang:monitor() BIFs could erroneously fail
even though configured distribution service was available. This occurred if
these BIFs were called after the distribution had been started using dynamic
node name assignment but before the name had been assigned.
Own Id: OTP-18124 Aux Id: OTP-17558, PR-6032

	Added the missing mandatory address/0 callback in the gen_tcp_dist
example.
Own Id: OTP-18136

 Kernel 8.4

 Fixed Bugs and Malfunctions

	The DNS resolver implementation has been rewritten to validate replies more
thoroughly, and a bit optimized to create less garbage.
Own Id: OTP-17323

	The socket option 'reuseaddr' is no longer ignored on Windows.
Own Id: OTP-17447 Aux Id: GH-4819

	Fix bug where using the atoms string or report as the format when calling
logger:log(Level, Format, Args) (or any other logging function) would cause
a crash or incorrect logging.
Own Id: OTP-17551 Aux Id: GH-5071 PR-5075

	As of OTP 25, global will by default prevent overlapping partitions due to
network issues by actively disconnecting from nodes that reports that they
have lost connections to other nodes. This will cause fully connected
partitions to form instead of leaving the network in a state with overlapping
partitions.
Prevention of overlapping partitions can be disabled using the
prevent_overlapping_partitions
kernel(6) parameter, making global behave like it used to do. This is,
however, problematic for all applications expecting a fully connected network
to be provided, such as for example mnesia, but also for global itself. A
network of overlapping partitions might cause the internal state of global
to become inconsistent. Such an inconsistency can remain even after such
partitions have been brought together to form a fully connected network again.
The effect on other applications that expects that a fully connected network
is maintained may vary, but they might misbehave in very subtle hard to detect
ways during such a partitioning. Since you might get hard to detect issues
without this fix, you are strongly advised not to disable this fix. Also
note that this fix has to be enabled on all nodes in the network in order
to work properly.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17911 Aux Id: PR-5687, PR-5611, OTP-17843

	Starting the helper program for name resolving; inet_gethost, has been
improved to use an absolute file system path to ensure that the right program
is started.
If the helper program can not be started - the system now halts, to avoid
running with a silently broken name resolver.
Own Id: OTP-17958 Aux Id: OTP-17978

	The type specification for inet_res:getbyname/2,3 has been corrected to
reflect that it can return peculiar #hostent{} records.
Own Id: OTP-17986 Aux Id: PR-5412, PR-5803

	code:module_status/1 would always report BEAM files loaded from an archive
as modified, and code:modified_modules/0 would always return the name of
all modules loaded from archives.
Own Id: OTP-17990 Aux Id: GH-5801

	In logger fix file handler shutdown delay by using erlang timers instead of
the timer module's timers.
Own Id: OTP-18001 Aux Id: GH-5780 PR-5829

	Fix the meta data in log events generated by logger on failure to not contain
the original log event's meta data.
Own Id: OTP-18003 Aux Id: PR-5771

	Fix logger file backend to re-create the log folder if it has been deleted.
Own Id: OTP-18015 Aux Id: GH-5828 PR-5845

	[socket] Encode of sockaddr has been improved.
Own Id: OTP-18020

	Fix put_chars requests to the io server with incomplete unicode data to exit
with no_translation error.
Own Id: OTP-18070 Aux Id: PR-5885

 Improvements and New Features

	The net module now works on Windows.
Own Id: OTP-16464

	An Erlang installation directory is now relocatable on the file system given
that the paths in the installation's RELEASES file are paths that are
relative to the installations root directory. The
`release_handler:create_RELEASES/4 function can generate a RELEASES
file with relative paths if its RootDir parameter is set to the empty
string.
Own Id: OTP-17304

	The following distribution flags are now mandatory: DFLAG_BIT_BINARIES,
DFLAG_EXPORT_PTR_TAG, DFLAG_MAP_TAGS, DFLAG_NEW_FLOATS, and
DFLAG_FUN_TAGS. This mainly concerns libraries or application that implement
the distribution protocol themselves.
Own Id: OTP-17318 Aux Id: PR-4972

	Fix os:cmd to work on Android OS.
Own Id: OTP-17479 Aux Id: PR-4917

	The configuration files .erlang,
.erlang.cookie and
.erlang.crypt can now be located in the XDG
Config Home directory.
See the documentation for each file and filename:basedir/2 for more details.
Own Id: OTP-17554 Aux Id: GH-5016 PR-5408 OTP-17821

	Dynamic node name improvements: erlang:is_alive/0 changed to return true for
pending dynamic node name and new function net_kernel:get_state/0.
Own Id: OTP-17558 Aux Id: OTP-17538, PR-5111, GH-5402

	The types for callback result types in gen_statem has bee augmented with
arity 2 types where it is possible for a callback module to specify the type
of the callback data, so the callback module can get type validation of it.
Own Id: OTP-17589 Aux Id: PR-4926

	The tagged tuple tests and fun-calls have been optimized and are now a little
bit cheaper than previously.
These optimizations become possible after making sure that all boxed terms
have at least one word allocated after the arity word. This has been
accomplished by letting all empty tuples refer to the same empty tuple literal
which also reduces memory usage for empty tuples.
Own Id: OTP-17608

	A net_ticker_spawn_options
kernel configuration parameter with which one can set spawn options for the
distribution channel ticker processes has been introduced.
Own Id: OTP-17617 Aux Id: PR-5069

	The most, or at least the most used, rpc operations now require erpc
support in order to communicate with other Erlang nodes. erpc was introduced
in OTP 23. That is, rpc operations against Erlang nodes of releases prior to
OTP 23 will fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17681 Aux Id: PR-5307

	The new module peer supersedes the slave module. The slave module is now
deprecated and will be removed in OTP 27.
peer contains an extended and more robust API for starting erlang nodes.
Own Id: OTP-17720 Aux Id: PR-5162

	In order to make it easier for the user to manage multiple outstanding
asynchronous call requests, new functionality utilizing request identifier
collections have been introduced in
erpc,
gen_server,
gen_statem, and
gen_event.
Own Id: OTP-17784 Aux Id: PR-5792

	Type specifications have been added to the gen_server, and the documentation
has been updated to utilize this.
This surfaced a few type violations that has been corrected in global,
logger_olp and rpc.
Own Id: OTP-17915 Aux Id: PR-5751, GH-2375, GH-2690

	IP address validation functions is_ipv4_address/1, is_ipv6_address/1 and
is_ip_address/1 have been added to the module inet in Kernel.
Own Id: OTP-17923 Aux Id: PR-5646

	An API for multihomed SCTP connect has been added in the guise of
gen_sctp:connectx_init/*
Own Id: OTP-17951 Aux Id: PR-5656

	[socket] Add encoding of the field hatype of the type sockaddr_ll (family
'packet').
Own Id: OTP-17968 Aux Id: OTP-16464

	Added support for configurable features as described in EEP-60. Features can
be enabled/disabled during compilation with options
(-enable-feature Feature, -disable-feature Feature and
+{feature, Feature, enable|disable}) to erlc as well as with directives
(-feature(Feature, enable|disable).) in the file. Similar options can be
used to erl for enabling/disabling features allowed at runtime. The new
maybe expression (EEP-49) is fully supported as the feature maybe_expr.
The features support is documented in the reference manual.
Own Id: OTP-17988

 Kernel 8.3.2.4

 Fixed Bugs and Malfunctions

	gen_tcp:connect with socket address and socket (inet-) backend fails because
of missing callback function.
Own Id: OTP-18707 Aux Id: #7530

 Kernel 8.3.2.3

 Fixed Bugs and Malfunctions

	Spec for function net:if_names/0 incorrect
Own Id: OTP-18296 Aux Id: OTP-16464

	Missing ctrl option name transation for TOS and TTL (on FreeBSD) when using
gen_udp with the 'socket' inet_backend.
Own Id: OTP-18315

	The tcp connect option 'bind_to_device' could not be used with inet_backend =
'socket'. 'inet' requires value type binarry() and 'socket' requires value
type 'string()'.
Own Id: OTP-18357 Aux Id: #6509

	Minor issue processing options when calling gen_tcp:connect with a sockaddr()
and inet_backend = socket.
Own Id: OTP-18358 Aux Id: #6528

 Improvements and New Features

	Improve warning message format for gen_tcp_socket.
Own Id: OTP-18317

 Kernel 8.3.2.2

 Improvements and New Features

	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

 Kernel 8.3.2.1

 Fixed Bugs and Malfunctions

	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

 Kernel 8.3.2

 Fixed Bugs and Malfunctions

	inet:getopts/2 for the 'raw' option for a socket created with inet-backend
'socket' failed.
Own Id: OTP-18078 Aux Id: GH-5930

	Corrected the behaviour of the shutdown function when using with the
inet_backend = socket. It was not sufficiently compatible with the "old"
gen_tcp.
Own Id: OTP-18080 Aux Id: GH-5930

 Kernel 8.3.1

 Fixed Bugs and Malfunctions

	Fix failed accepted connection setup after previous established connection
from same node closed down silently.
Own Id: OTP-17979 Aux Id: ERIERL-780

	Fixed a problem where typing Ctrl-R in the shell could hang if there were some
problem with the history log file.
Own Id: OTP-17981 Aux Id: PR-5791

 Kernel 8.3

 Fixed Bugs and Malfunctions

	Handling of send_timeout for gen_tcp has been corrected so that the
timeout is honored also when sending 0 bytes.
Own Id: OTP-17840

	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions
kernel(6) parameter. When this fix has been enabled, global will actively
disconnect from nodes that reports that they have lost connections to other
nodes. This will cause fully connected partitions to form instead of leaving
the network in a state with overlapping partitions. Note that this fix has
to be enabled on all nodes in the network in order to work properly. Since
this quite substantially changes the behavior, this fix is currently disabled
by default. Since you might get hard to detect issues without this fix you
are, however, strongly advised to enable this fix in order to avoid issues
such as the ones described above. As of OTP 25 this fix will become enabled by
default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

	Fix bug where logger would crash when logging a report including improper
lists.
Own Id: OTP-17851

	Make erlang:set_cookie work for dynamic node names.
Own Id: OTP-17902 Aux Id: GH-5402, PR-5670

 Improvements and New Features

	Add support for using socket:sockaddr_in() and socket:sockaddr_in6() when
using gen_sctp, gen_tcp and gen_udp. This will make it possible to use Link
Local IPv6 addresses.
Own Id: OTP-17455 Aux Id: GH-4852

	A net_tickintensity kernel parameter
has been introduced. It can be used to control the amount of ticks during a
net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

	Improve documentation for the dynamic node name feature.
Own Id: OTP-17918

 Kernel 8.2

 Fixed Bugs and Malfunctions

	socket:which_sockets(pid()) uses wrong keyword when looking up socket owner
('ctrl' instead of 'owner').
Own Id: OTP-17716

	In epmd_ntop, the #if defined(EPMD6) conditional was inverted and it was only
including the IPv6-specific code when EPMD6 was undefined. This was causing
IPv6 addrs to be interpreted as IPv4 addrs and generating nonsense IPv4
addresses as output.
Several places were incorrectly using 'num_sockets' instead of 'i' to index
into the iserv_addr array during error logging. This would result in a read
into uninitialized data in the iserv_addr array.
Thanks to John Eckersberg for providing this fix.
Own Id: OTP-17730

	Minor fix of the erl_uds_dist distribution module example.
Own Id: OTP-17765 Aux Id: PR-5289

	A bug has been fixed for the legacy TCP socket adaption module
gen_tcp_socket where it did bind to a socket address when given a file
descriptor, but should not.
Own Id: OTP-17793 Aux Id: PR-5348, OTP-17451, PR-4787, GH-4680, PR-2989,
OTP-17216

	Improve the error printout when open_port/2 fails because
of invalid arguments.
Own Id: OTP-17805 Aux Id: PR-5406

	Calling socket:monitor/1 on an already closed socket should succeed and result
in an immediate DOWN message. This has now been fixed.
Own Id: OTP-17806

	Fix the configuration option logger_metadata to work.
Own Id: OTP-17807 Aux Id: PR-5418

	Fix tls and non-tls distribution to use erl_epmd:address_please to figure out
if IPv4 or IPv6 addresses should be used when connecting to the remote node.
Before this fix, a dns lookup of the remote node hostname determined which IP
version was to be used which meant that the hostname had to resolve to a valid
ip address.
Own Id: OTP-17809 Aux Id: PR-5337 GH-5334

 Improvements and New Features

	Add logger:reconfigure/0.
Own Id: OTP-17375 Aux Id: PR-4663 PR-5186

	Add socket function ioctl/2,3,4 for socket device control.
Own Id: OTP-17528

	Add simple support for socknames/1 for gen_tcp_socket and gen_udp_socket.
Own Id: OTP-17531

	The types for callback result types in gen_statem has bee augmented with
arity 2 types where it is possible for a callback module to specify the type
of the callback data, so the callback module can get type validation of it.
Own Id: OTP-17738 Aux Id: PR-4926, OTP-17589

 Kernel 8.1.3

 Fixed Bugs and Malfunctions

	The internal, undocumented, but used, module inet_dns has been fixed to
handle mDNS high bit usage of the Class field.
Code that uses the previously obsolete, undocumented and unused record field
#dns_rr.func will need to be updated since that field is now used as a
boolean flag for the mDNS high Class bit. Code that uses the also undocumented
record #dns_query will need to be recompiled since a boolean field
#dns_query.unicast_response has been added for the mDNS high Class bit.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17734 Aux Id: GH-5327, OTP-17659

	The fix for Linux's behaviour when reconnecting an UDP socket in PR-5120
released in OTP-24.1.2 has been refined to only dissolve the socket's
connection before a connect if the socket is already connected, that is: only
for a reconnect.
This allows code to open a socket with an ephemeral port, get the port number
and connect; without the port number changing (on Linux). This turned out to
have at least one valid use case (besides test cases).
Should one reconnect the socket then the port number may change, on Linux; it
is a known quirk, which can be worked around by binding to a specific port
number when opening the socket. If you can do without an ephemeral port, that
is...
Own Id: OTP-17736 Aux Id: GH-5279, PR-5120, OTP-17559

 Kernel 8.1.2

 Fixed Bugs and Malfunctions

	The undocumented DNS encode/decode module inet_dns has been cleaned up to
handle the difference between "symbolic" and "raw" records in a more
consistent manner.
PR-5145/OTP-17584 introduced a change that contributed to an already existing
confusion, which this correction should remedy.
Own Id: OTP-17659 Aux Id: ERIERL-702

 Kernel 8.1.1

 Fixed Bugs and Malfunctions

	Add more info about the socket 'type' ('socket' or 'port') for the DOWN
message when monitoring sockets.
Own Id: OTP-17640

 Kernel 8.1

 Fixed Bugs and Malfunctions

	The extended error information has been corrected and improved for the
following BIFs: binary_to_existing_atom/2,
list_to_existing_atom/1,
erlang:send_after/{3,4}, and erlang:start_timer/{3,4}.
Own Id: OTP-17449 Aux Id: GH-4900

	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

	Improve handling of closed sockets for inet:info/1.
Own Id: OTP-17492

	This change fixes a performance problem introduced in pull-request #2675.
Pull-request #2675 made so the system tried to start children of already
started applications which is unnecessary. This change fixes this performance
problem.
Own Id: OTP-17519

	Fix code:get_doc/1 to not crash when module is located in an escript.
Own Id: OTP-17570 Aux Id: PR-5139 GH-4256 ERL-1261

	Parsing of the result value in the native DNS resolver has been made more
defensive against incorrect results.
Own Id: OTP-17578 Aux Id: ERIERL-683

	A bug in the option handling for the legacy socket adaptor, that is; when
using inet_backend = socket, has been fixed. Now socket options are set
before the bind() call so options regarding, for example address reuse have
the desired effect.
Own Id: OTP-17580 Aux Id: GH-5122

	inet:ntoa/1 has been fixed to not accept invalid numerical addresses.
Own Id: OTP-17583 Aux Id: GH-5136

	Parsing of DNS records has been improved for records of known types to not
accept and present malformed ones in raw format.
Own Id: OTP-17584 Aux Id: PR-5145

	The ip_mreq() type for the {ip,add_membership} and {ip,drop_membership}
socket options has been corrected to have an interface field instead of,
incorrectly, an address field.
Own Id: OTP-17590 Aux Id: PR-5170

 Improvements and New Features

	Add simple utility function to display existing sockets i the erlang shell
(socket:i/0).
Own Id: OTP-17376 Aux Id: OTP-17157

	gen_udp can now be configured to use the socket inet-backend (in the same way
as gen_tcp).
Own Id: OTP-17410

	Functions erlang:set_cookie(Cookie) and erlang:get_cookie(Node) have been
added for completeness and to facilitate configuring distributed nodes with
different cookies.
The documentation regarding distribution cookies has been improved to be less
vague.
Own Id: OTP-17538 Aux Id: GH-5063, PR-5111

	A workaround has been implemented for Linux's quirky behaviour to not adjust
the source IP address when connecting a connected (reconnecing) UDP socket.
The workaround is to, on Linux, always dissolve any connection before
connecting an UDP socket.
Own Id: OTP-17559 Aux Id: GH-5092, PR-5120

	Documented our recommendation against opening NFS-mounted files, FIFOs,
devices, and similar using file:open/2.
Own Id: OTP-17576 Aux Id: ERIERL-685

 Kernel 8.0.2

 Fixed Bugs and Malfunctions

	For gen_tcp:connect/3,4 it is possible to specify a specific source port,
which should be enough to bind the socket to an address with that port before
connecting.
Unfortunately that feature was lost in OTP-17216 that made it mandatory to
specify the source address to get an address binding, and ignored a specified
source port if no source address was specified.
That bug has now been corrected.
Own Id: OTP-17536 Aux Id: OTP-17216, ERIERL-677

 Kernel 8.0.1

 Fixed Bugs and Malfunctions

	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

	After a node restart with init:restart/0,1, the module socket was not
usable because supporting tables had been cleared and not re-initialized. This
has now been fixed.
Handling of the "." domain as a search domain was incorrect and caused a crash
in the DNS resolver inet_res, which has now been fixed.
Own Id: OTP-17439 Aux Id: GH-4827, PR-4888, GH-4838

	Handling of combinations of the fd option and binding to an address has been
corrected, especially for the local address family.
Own Id: OTP-17451 Aux Id: OTP-17374

	Bug fixes and code cleanup for the new socket implementation, such as:
Assertions on the result of demonitoring has been added in the NIF code, where
appropriate.
Internal state handling for socket close in the NIF code has been reviewed.
Looping over close() for EINTR in the NIF code has been removed, since it
is strongly discouraged on Linux and Posix is not clear about if it is
allowed.
The inet_backend temporary socket option for legacy gen_tcp sockets has
been documented.
The return value from net:getaddrinfo/2 has been corrected: the protocol
field is now an atom/0, instead of, incorrectly,
list(atom()). The documentation has also been corrected about
this return type.
Deferred close of a socket:sendfile/* file was broken and has been
corrected.
Some debug code, not enabled by default, in the socket NIF has been corrected
to not accidentally core dump for debug printouts of more or less innocent
events.
Own Id: OTP-17452

 Kernel 8.0

 Fixed Bugs and Malfunctions

	A bug has been fixed for the internal inet_res resolver cache that handled a
resolver configuration file status timer incorrectly and caused performance
problems due to many unnecessary file system accesses.
Own Id: OTP-14700 Aux Id: PR-2848

	Change the value of the tag head returned by disk_log:info/1 from
{ok, Head} to just Head.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16809 Aux Id: ERL-1313

	Two options have been added to erl_call. The -fetch_stdout option fetches
stdout data resulting from the code invoked by erl_call. The -fetch_stdout
option disables printing of the result term. In order to implement the first
of these two options a new function called ei_xrpc_from has been added to
erl_interface. For details see the erl_call documentation and
erl_interface documentation.
Own Id: OTP-17132

	Missing runtime dependencies has been added to this application.
Own Id: OTP-17243 Aux Id: PR-4557

	inet:get_rc/0 has been corrected to return host entries as separate entries
instead of (incorrectly) in a list within the list. This bug was introduced by
OTP-16487 in OTP-23.0-rc1.
Own Id: OTP-17262 Aux Id: GH-4588, PR-4604, OTP-16487

	The type gen_tcp:option_name() had a duplicate pktoptions value.
Own Id: OTP-17277

	Fixed removal of empty groups from internal state in pg.
Own Id: OTP-17286 Aux Id: PR-4619

	erl -remsh now prints an error message when it fails to connect to the
remote node.
Own Id: OTP-17287 Aux Id: PR-4581

	Fix bugs related to corrupt shell history files.
Error messages printed by shell history are now logged as logger error reports
instead of written to standard error.
Own Id: OTP-17288 Aux Id: PR-4581

	A logger warning is now issues when too many arguments are given to -name or
-sname. Example: erl -name a b.
Own Id: OTP-17315 Aux Id: GH-4626

	The cache used by inet_res now, again, can handle multiple IP addresses per
domain name, and thus fixes a bug introduced in PR-3041 (OTP-13126) and
PR-2891 (OTP-14485).
Own Id: OTP-17344 Aux Id: PR-4633, GH-4631, OTP-14485, OTP-12136

	Sockets created with socket:accept not counted (socket:info/0).
Own Id: OTP-17372

	The {fd, Fd} option to gen_tcp:listen/2 did not work for inet_backend
socket, which has been fixed.
Own Id: OTP-17374 Aux Id: PR-4787, GH-4680, PR-2989, OTP-17216

 Improvements and New Features

	The cache used by the DNS resolver inet_res has been improved to use ETS
lookups instead of server calls. This is a considerable speed improvement for
cache hits.
Own Id: OTP-13126 Aux Id: PR-3041

	The cache ETS table type for the internal DNS resolver inet_res has changed
type (internally) to get better speed and atomicity.
Own Id: OTP-14485 Aux Id: PR-2891

	The experimental socket module can now use any protocol (by name) the OS
supports. Suggested in PR-2641, implemented in PR-2670.
Own Id: OTP-14601 Aux Id: PR-2641, PR-2670, OTP-16749

	The DNS resolver inet_res has been updated to support CAA (RFC 6844) and URI
(RFC 7553) records.
Own Id: OTP-16517 Aux Id: PR-2827

	A compatibility adaptor for gen_tcp to use the new socket API has been
implemented (gen_tcp_socket). Used when setting the kernel application
variable inet_backend = socket.
Own Id: OTP-16611 Aux Id: OTP-16749

	Extended error information for failing BIF calls as proposed in
EEP 54 has been
implemented.
When a BIF call from the Erlang shell fails, more information about which
argument or arguments that were in error will be printed. The same extended
error information will by proc_lib, common_test, and qlc when BIF calls
fail.
For applications that wish to provide the same extended error information,
there are new functions erl_error:format_exception/3 and
erl_error:format_exception/4.
There is a new error/3 BIF that allows applications or
libraries to provide extended error information in the same way for their own
exceptions.
Own Id: OTP-16686

	The file server can now be bypassed in file:delete/1,2 with the raw
option.
Own Id: OTP-16698 Aux Id: PR-2634

	An example implementation of Erlang distribution over UDS using distribution
processes has been introduced.
Thanks to Jérôme de Bretagne
Own Id: OTP-16703 Aux Id: PR-2620

	The process alias feature
as outlined by
EEP 53 has been
introduced. It is introduced in order to provide a lightweight mechanism that
can prevent late replies after timeout or connection loss. For more
information, see EEP 53 and the documentation of the new
alias/1 BIF and the new options to the
monitor/3 BIF.
The call operation in the framework used by gen_server, gen_statem, and
gen_event has been updated to utilize alias in order to prevent late
responses. The gen_statem behavior still use a proxy process in the
distributed case, since it has always prevented late replies and aliases won't
work against pre OTP 24 nodes. The proxy process can be removed in OTP 26.
The alias feature also made it possible to introduce new functions similar to
the erpc:receive_response() function in the gen
behaviors, so the new functions
gen_server:receive_response(),
gen_statem:receive_response(),
gen_event:receive_response() have also
been introduced.
Own Id: OTP-16718 Aux Id: PR-2735

	The experimental new socket API has been further developed. Some backwards
incompatible changes with respect to OTP 23 have been made.
The control message format has been changed so a decoded value is now in the
'value' field instead of in the 'data' field. The 'data' field now always
contains binary data.
Some type names have been changed regarding message headers and control
message headers.
socket:bind/2 now returns plain ok instead of {ok, Port} which was only
relevant for the inet and inet6 address families and often not
interesting. To find out which port was chosen use socket:sockname/1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16749 Aux Id: OTP-14601

	New function os:env/0 returns all OS environment variables as a list of
2-tuples.
Own Id: OTP-16793 Aux Id: ERL-1332, PR-2740

	Remove the support for distributed disk logs. The new function
disk_log:all/0 is to be used instead of disk_log:accessible_logs/0. The
function disk_log:close/1 is to be used instead of disk_log:lclose/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16811

	Expand the spec for erl_epmd:listen_port_please/2 to mirror
erl_epmd:port_please/2.
Own Id: OTP-16947 Aux Id: PR-2781

	A new erl parameter for specifying a file descriptor with configuration data
has been added. This makes it possible to pass the parameter "-configfd FD"
when executing the erl command. When this option is given, the system will try
to read and parse configuration parameters from the file descriptor.
Own Id: OTP-16952

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	The pg2 module has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16968

	Accept references up to a size of 160-bits from remote nodes. This is the
first step in an upgrade path toward using references up to 160-bits in a
future OTP release.
Own Id: OTP-17005 Aux Id: OTP-16718

	Allow utf-8 binaries as parts of logger_formatter template.
Own Id: OTP-17015

	Let disk_log:open/1 change the size if a wrap log is opened for the first
time, that is, the disk log process does not exist, and the value of option
size does not match the current size of the disk log.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17062 Aux Id: ERL-1418, GH-4469, ERIERL-537

	Allow the shell history of an erlang node to be fetched and stores using a
custom callback module. See shell_history configuration parameter in the
kernel documentation for more details.
Own Id: OTP-17103 Aux Id: PR-2949

	The simple logger (used to log events that happen before kernel has been
started) has been improved to print prettier error messages.
Own Id: OTP-17106 Aux Id: PR-2885

	socket:sendfile/2,3,4,5 has been implemented, for platforms that support the
underlying socket library call.
Own Id: OTP-17154 Aux Id: OTP-16749

	Add socket monitor(s) for all types sockets.
Own Id: OTP-17155

	Fix various issues with the gen_tcp_socket. Including documenting some
incompatibilities.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17156

	inet:i/0 now also shows existing gen_tcp compatibility sockets (based on
'socket').
Own Id: OTP-17157

	Added support in logger for setting primary metadata. The primary metadata is
passed as a base metadata to all log events in the system. See
Metadata in the Logger chapter of the Kernel
User's Guide for more details.
Own Id: OTP-17181 Aux Id: PR-2457

	Recognize new key 'optional_applications' in application resource files.
Own Id: OTP-17189 Aux Id: PR-2675

	The Fun's passed to logger:log/2,3,4 can now return metadata that will only
be fetched when needed. See logger:log/2,3,4 for more
details.
Own Id: OTP-17198 Aux Id: PR-2721

	erpc:multicall() has been rewritten to be able to utilize the newly
introduced and improved selective receive optimization.
Own Id: OTP-17201 Aux Id: PR-4534

	Add utility fiunction inet:info/1 to provide miscellaneous info about a
socket.
Own Id: OTP-17203 Aux Id: OTP-17156

	The behaviour for gen_tcp:connect/3,4 has been changed to not per default
bind to an address, which allows the network stack to delay the address and
port selection to when the remote address is known. This allows better port
re-use, and thus enables far more outgoing connections, since the ephemeral
port range no longer has to be a hard limit.
There is a theoretical possibility that this behaviour change can affect the
set of possible error values, or have other small implications on some
platforms.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17216 Aux Id: PR-2989

	An option {nxdomain_reply, boolean()} has been implemented in the DNS
resolver inet_res. It is useful since an nxdomain error from a name server
does contain the SOA record if the domain exists at all. This record is useful
to determine a TTL for negative caching of the failed entry.
Own Id: OTP-17266 Aux Id: PR-4564

	Optimized lookup of local processes part of groups in pg.
Own Id: OTP-17284 Aux Id: PR-4615

	The return values from module socket functions send(), sendto(),
sendmsg(), sendfile() and recv() has been changed to return a tuple
tagged with select when a SelectInfo was returned, and not sometimes
tagged with ok.
This is a backwards incompatible change that improves usability for code using
asynchronous operations.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17355 Aux Id: OTP-17154

	Fixed warnings in code matching on underscore prefixed variables.
Own Id: OTP-17385 Aux Id: OTP-17123

 Kernel 7.3.1.7

 Improvements and New Features

	A new function global:disconnect/0 has been introduced with which one can
cleanly disconnect a node from all other nodes in a cluster of global nodes.
Own Id: OTP-18232 Aux Id: OTP-17843, PR-6264

 Kernel 7.3.1.6

 Fixed Bugs and Malfunctions

	A call to net_kernel:setopts(new, Opts) at the
same time as a connection was being set up could cause a deadlock between the
net_kernel process and the process setting up the connection.
Own Id: OTP-18198 Aux Id: GH-6129, PR-6216

 Kernel 7.3.1.5

 Fixed Bugs and Malfunctions

	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions
kernel(6) parameter. When this fix has been enabled, global will actively
disconnect from nodes that reports that they have lost connections to other
nodes. This will cause fully connected partitions to form instead of leaving
the network in a state with overlapping partitions. Note that this fix has
to be enabled on all nodes in the network in order to work properly. Since
this quite substantially changes the behavior, this fix is currently disabled
by default. Since you might get hard to detect issues without this fix you
are, however, strongly advised to enable this fix in order to avoid issues
such as the ones described above. As of OTP 25 this fix will become enabled by
default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

	Fix failed accepted connection setup after previous established connection
from same node closed down silently.
Own Id: OTP-17979 Aux Id: ERIERL-780

 Improvements and New Features

	A net_tickintensity kernel parameter
has been introduced. It can be used to control the amount of ticks during a
net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

 Kernel 7.3.1.4

 Fixed Bugs and Malfunctions

	Parsing of the result value in the native DNS resolver has been made more
defensive against incorrect results.
Own Id: OTP-17578 Aux Id: ERIERL-683

 Kernel 7.3.1.3

 Fixed Bugs and Malfunctions

	Fix code:get_doc/1 to not crash when module is located in an escript.
Own Id: OTP-17570 Aux Id: PR-5139 GH-4256 ERL-1261

 Kernel 7.3.1.2

 Fixed Bugs and Malfunctions

	Handling of the "." domain as a search domain was incorrect and caused a crash
in the DNS resolver inet_res, which has now been fixed.
Own Id: OTP-17473 Aux Id: GH-4838, OTP-17439

	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

 Kernel 7.3.1.1

 Fixed Bugs and Malfunctions

	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

 Kernel 7.3.1

 Fixed Bugs and Malfunctions

	A bug in the Erlang DNS resolver has been fixed, where it could be made to
bring down the kernel supervisor and thereby the whole node, when getting an
incorrect (IN A reply to an IN CNAME query) reply from the DNS server and used
the reply record's value without verifying its type.
Own Id: OTP-17361

 Kernel 7.3

 Fixed Bugs and Malfunctions

	The range check for compression pointers in DNS encoding was faulty, which
caused incorrect label compression encoding for very large DNS messages;
larger than about 16 kBytes, such as AXFR responses. This more than 11 year
old bug has now been corrected.
Own Id: OTP-13641 Aux Id: PR-2959

	Fix of internal links in the erpc documentation.
Own Id: OTP-17202 Aux Id: PR-4516

	Fix bug where complex seq_trace tokens (that is lists, tuples, maps etc) could
becomes corrupted by the GC. The bug was introduced in OTP-21.
Own Id: OTP-17209 Aux Id: PR-3039

	When running Xref in the modules mode, the Debugger application would show
up as a dependency for the Kernel applications.
Own Id: OTP-17223 Aux Id: GH-4546, PR-4554

 Improvements and New Features

	erl_epmd (the epmd client) will now try to reconnect to the local EPMD if
the connection is broken.
Own Id: OTP-17178 Aux Id: PR-3003

 Kernel 7.2.1

 Fixed Bugs and Malfunctions

	When using the DNS resolver option servfail_retry_timeout it did not honour
the overall call time-out in e.g inet_res:getbyname/3. This misbehaviour has
now been fixed. Also, the servfail_retry_timeout behaviour has been improved
to only be enforced for servers that gives a servfail answer.
Own Id: OTP-12960 Aux Id: ERIERL-598, PR-4509

 Kernel 7.2

 Fixed Bugs and Malfunctions

	The apply call's in logger.hrl are now called with erlang prefix to
avoid clashed with local apply/3 functions.
Own Id: OTP-16976 Aux Id: PR-2807

	Fix memory leak in pg.
Own Id: OTP-17034 Aux Id: PR-2866

	Fix crash in logger_proxy due to stray gen_server:call replies not being
handled. The stray replies come when logger is under heavy load and the flow
control mechanism is reaching its limit.
Own Id: OTP-17038

	Fixed a bug in erl_epmd:names() that caused it to return the illegal return
value noport instead of {error, Reason} where Reason is the actual error
reason. This bug also propagated to net_adm:names().
This bug was introduced in kernel version 7.1 (OTP 23.1).
Own Id: OTP-17054 Aux Id: ERL-1424

 Improvements and New Features

	Add export of some resolver documented types.
Own Id: OTP-16954 Aux Id: ERIERL-544

	Add configurable retry timeout for resolver lookups.
Own Id: OTP-16956 Aux Id: ERIERL-547

	gen_server:multi_call() has been optimized in the special case of only
calling the local node with timeout set to infinity.
Own Id: OTP-17058 Aux Id: PR-2887

 Kernel 7.1

 Fixed Bugs and Malfunctions

	A fallback has been implemented for file:sendfile when using inet_backend
socket
Own Id: OTP-15187 Aux Id: ERL-1293

	Make default TCP distribution honour option backlog in
inet_dist_listen_options.
Own Id: OTP-16694 Aux Id: PR-2625

	Raw option handling for the experimental gen_tcp_socket backend was broken
so that all raw options were ignored by for example gen_tcp:listen/2, a bug
that now has been fixed. Reported by Jan Uhlig.
Own Id: OTP-16743 Aux Id: ERL-1287

	Accept fails with inet-backend socket.
Own Id: OTP-16748 Aux Id: ERL-1284

	Fixed various minor errors in the socket backend of gen_tcp.
Own Id: OTP-16754

	Correct disk_log:truncate/1 to count the header. Also correct the
documentation to state that disk_log:truncate/1 can be used with external
disk logs.
Own Id: OTP-16768 Aux Id: ERL-1312

	Fix erl_epmd:port_please/2,3 type specs to include all possible error values.
Own Id: OTP-16783

	Fix erl -erl_epmd_port to work properly. Before this fix it did not work at
all.
Own Id: OTP-16785

	Fix typespec for internal function erlang:seq_trace_info/1 to allow
term/0 as returned label. This in turn fixes so that calls to
seq_trace:get_token/1 can be correctly analyzer by dialyzer.
Own Id: OTP-16823 Aux Id: PR-2722

	Fix erroneous double registration of processes in pg when distribution is
dynamically started.
Own Id: OTP-16832 Aux Id: PR-2738

 Improvements and New Features

	Make (use of) the socket registry optional (still enabled by default). Its now
possible to build OTP with the socket registry turned off, turn it off by
setting an environment variable and controlling in runtime (via function calls
and arguments when creating sockets).
Own Id: OTP-16763

	erl -remsh nodename no longer requires the hostname to be given when used
together with dynamic nodenames.
Own Id: OTP-16784

 Kernel 7.0

 Fixed Bugs and Malfunctions

	Fix race condition during shutdown when shell_history is enabled. The race
condition would trigger crashes in disk_log.
Own Id: OTP-16008 Aux Id: PR-2302

	Fix the Erlang distribution to handle the scenario when a node connects that
can handle message fragmentation but can not handle the atom cache. This bug
only affects users that have implemented a custom distribution carrier. It has
been present since OTP-21.
The DFLAG_FRAGMENT distribution flag was added to the set of flags that can
be rejected by a distribution implementation.
Own Id: OTP-16284

	Fix bug where a binary was not allowed to be the format string in calls to
logger:log.
Own Id: OTP-16395 Aux Id: PR-2444

	Fix bug where logger would end up in an infinite loop when trying to log the
crash of a handler or formatter.
Own Id: OTP-16489 Aux Id: ERL-1134

	code:lib_dir/1 has been fixed to also return the lib dir for erts.
This is been marked as an incompatibility for any application that depended on
{error,bad_name} to be returned for erts.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16502

	The application stop/1 callback was not called if the application master of
the application terminated.
Own Id: OTP-16504 Aux Id: PR-2328

	Fix bug in application:loaded_applications/0 that could cause it to fail
with badarg if for example a concurrent upgrade/downgrade is running.
Own Id: OTP-16627 Aux Id: PR-2601

 Improvements and New Features

	A new module erpc has been introduced in the kernel application. The
erpc module implements an enhanced subset of the operations provided by the
rpc module. Enhanced in the sense that it makes it possible to distinguish
between returned value, raised exceptions, and other errors. erpc also has
better performance and scalability than the original rpc implementation.
This by utilizing the newly introduced
spawn_request() BIF. Also the rpc module
benefits from these improvements by utilizing erpc when it is possible.
This change has been marked as a potential incompatibility since
rpc:block_call() now only is guaranteed to block other
block_call() operations. The documentation previously claimed that it would
block all rpc operations. This has however never been the case. It
previously did not block node-local block_call() operations.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13450 Aux Id: OTP-15251

	A client node can receive its node name dynamically from the node that it
first connects to. This featured can by used by
	starting with erl -sname undefined
	erl_interface functions ei_connect_init and friends
	erl_call -R

Own Id: OTP-13812

	Improved the printout of single line logger events for most of the OTP
behaviours in STDLIB and Kernel. This includes proc_lib, gen_server,
gen_event, gen_statem, gen_fsm, supervisor, supervisor_bridge and
application.
Improved the chars_limit and
depth handling in proc_lib and when
formatting of exceptions.
Own Id: OTP-15299

	Remove usage and documentation of old requests of the I/O-protocol.
Own Id: OTP-15695

	Directories can now be opened by file:open/2 when passing the directory
option.
Own Id: OTP-15835 Aux Id: PR-2212

	The check of whether to log or not based on the log level in logger has been
optimized by using persistent_term to store the log level.
Own Id: OTP-15948 Aux Id: PR-2356

	file:read_file_info/2 can now be used on opened files and directories.
Own Id: OTP-15956 Aux Id: PR-2231

	The -config option to erl now can take multiple config files without
repeating the -config option. Example:
erl -config sys local
Own Id: OTP-16148 Aux Id: PR-2373

	Improved node connection setup handshake protocol. Made possible to agree on
protocol version without dependence on epmd or other prior knowledge of peer
node version. Also added exchange of node incarnation ("creation") values and
expanded the distribution capability flag field from 32 to 64 bits.
Own Id: OTP-16229

	The possibility to run Erlang distribution without relying on EPMD has been
extended. To achieve this a couple of new options to the inet distribution has
been added.
	-dist_listen false - Setup the distribution channel, but do not listen
for incoming connection. This is useful when you want to use the current
node to interact with another node on the same machine without it joining
the entire cluster.

	-erl_epmd_port Port - Configure a default port that the built-in EPMD
client should return. This allows the local node to know the port to connect
to for any other node in the cluster.

The erl_epmd callback API has also been extended to allow returning -1 as
the creation which means that a random creation will be created by the node.
In addition a new callback function called listen_port_please has been added
that allows the callback to return which listen port the distribution should
use. This can be used instead of inet_dist_listen_min/max if the listen port
is to be fetched from an external service.
Own Id: OTP-16250

	A first EXPERIMENTAL module that is a socket backend to gen_tcp and inet
has been implemented. Others will follow. Feedback will be appreciated.
Own Id: OTP-16260 Aux Id: OTP-15403

	The new experimental socket module has been moved to the Kernel application.
Own Id: OTP-16312

	Replace usage of deprecated function in the group module.
Own Id: OTP-16345

	Minor updates due to the new spawn improvements made.
Own Id: OTP-16368 Aux Id: OTP-15251

	Update of sequential tracing to also support other
information transfers than message passing.
Own Id: OTP-16370 Aux Id: OTP-15251, OTP-15232

	code:module_status/1 now accepts a list of modules. code:module_status/0,
which returns the statuses for all loaded modules, has been added.
Own Id: OTP-16402

	filelib:wildcard/1,2 is now twice as fast when a double star (**) is part
of the pattern.
Own Id: OTP-16419

	A new implementation of distributed named process groups has been introduced.
It is available in the pg module.
Note that this pg module only has the name in common with the experimental
pg module that was present in stdlib up until OTP 17.
Thanks to Maxim Fedorov for the implementation.
Own Id: OTP-16453 Aux Id: PR-2524

	The pg2 module has been deprecated. It has also been scheduled for removal
in OTP 24.
You are advised to replace the usage of pg2 with the newly introduced pg
module. pg has a similar API, but with a more scalable implementation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16455

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

	The internal hosts file resolver cache inet_hosts has been rewritten to
behave better when the hosts file changes. For example the cache is updated
per entry instead of cleared and reloaded so lookups do not temporarily fail
during reloading, and; when multiple processes simultaneously request reload
these are now folded into one instead of all done in sequence. Reported and
first solution suggestion by Maxim Fedorov.
Own Id: OTP-16487 Aux Id: PR-2516

	Add code:all_available/0 that can be used to get all available modules.
Own Id: OTP-16494

	As of OTP 23, the distributed disk_log feature has been deprecated. It has
also been scheduled for removal in OTP 24.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16495

	Add the function code:fetch_docs/1 for fetching embedded documentation for
aa Erlang module.
Own Id: OTP-16499

	Improve configure for the net nif, which should increase portability.
Own Id: OTP-16530 Aux Id: OTP-16464

	socket: Socket counters and socket global counters are now represented as maps
(instead of property lists).
Own Id: OTP-16535

	The experimental socket module has gotten restrictions removed so now the
'seqpacket' socket type should work for any communication domain (protocol
family) where the OS supports it, typically the Unix Domain.
Own Id: OTP-16550 Aux Id: ERIERL-476

	Allow using custom IO devices in logger_std_h.
Own Id: OTP-16563 Aux Id: PR-2523

	Added file:del_dir_r/1 which deletes a directory together with all of its
contents, similar to rm -rf on Unix systems.
Own Id: OTP-16570 Aux Id: PR-2565

	socket: By default the socket options rcvtimeo and sndtimeo are now disabled.
To enable these, OTP now has to be built with the configure option
--enable-esock-rcvsndtimeo
Own Id: OTP-16620

	The experimental gen_tcp compatibility code utilizing the socket module could
loose buffered data when receiving a specified number of bytes. This bug has
been fixed. Reported by Maksim Lapshin on bugs.erlang.org ERL-1234
Own Id: OTP-16632 Aux Id: ERL-1234

 Kernel 6.5.2.5

 Fixed Bugs and Malfunctions

	By default global does not take any actions to restore a fully connected
network when connections are lost due to network issues. This is problematic
for all applications expecting a fully connected network to be provided, such
as for example mnesia, but also for global itself. A network of
overlapping partitions might cause the internal state of global to become
inconsistent. Such an inconsistency can remain even after such partitions have
been brought together to form a fully connected network again. The effect on
other applications that expects that a fully connected network is maintained
may vary, but they might misbehave in very subtle hard to detect ways during
such a partitioning.
In order to prevent such issues, we have introduced a prevent overlapping
partitions fix which can be enabled using the
prevent_overlapping_partitions kernel(6) parameter. When this fix has been
enabled, global will actively disconnect from nodes that reports that they
have lost connections to other nodes. This will cause fully connected
partitions to form instead of leaving the network in a state with overlapping
partitions. Note that this fix has to be enabled on all nodes in the
network in order to work properly. Since this quite substantially changes the
behavior, this fix is currently disabled by default. Since you might get hard
to detect issues without this fix you are, however, strongly advised to
enable this fix in order to avoid issues such as the ones described above. As
of OTP 25 this fix will become enabled by default.
Own Id: OTP-17843 Aux Id: ERIERL-732, PR-5611

 Improvements and New Features

	A net_tickintensity kernel parameter has been introduced. It can be used
to control the amount of ticks during a net_ticktime period.
A new net_kernel:start/2 function has also been introduced in order to make
it easier to add new options. The use of net_kernel:start/1 has been
deprecated.
Own Id: OTP-17905 Aux Id: ERIERL-732, PR-5740

 Kernel 6.5.2.4

 Fixed Bugs and Malfunctions

	Fixed rare bug that could cause net_kernel process to hang for ever. Have seen
to happen with massive number of TLS connections while remote nodes are
restarting. Bug exists since OTP-22.0.
Own Id: OTP-17476 Aux Id: GH-4931, PR-4934

 Kernel 6.5.2.3

 Fixed Bugs and Malfunctions

	Fix a race condition in Global.
Own Id: OTP-16033 Aux Id: ERIERL-329, ERL-1414, GH-4448, ERL-885, GH-3923

 Kernel 6.5.2.2

 Fixed Bugs and Malfunctions

	When running Xref in the modules mode, the Debugger application would show
up as a dependency for the Kernel applications.
Own Id: OTP-17223 Aux Id: GH-4546, PR-4554

 Kernel 6.5.2.1

 Fixed Bugs and Malfunctions

	Fix bug in application:loaded_applications/0 that could cause it to fail
with badarg if for example a concurrent upgrade/downgrade is running.
Own Id: OTP-16627 Aux Id: PR-2601

 Kernel 6.5.2

 Fixed Bugs and Malfunctions

	The DNS resolver `inet_res` has been fixed to return the last intermediate
error when subsequent requests times out.
Own Id: OTP-16414 Aux Id: ERIERL-452

	The prim_net nif (net/kernel) made use of an undefined atom, notsup. This has
now been corrected.
Own Id: OTP-16440

	Fix a crash when attempting to log faults when loading files during early
boot.
Own Id: OTP-16491

	Fix crash in logger when logging to a remote node during boot.
Own Id: OTP-16493 Aux Id: ERIERL-459

 Improvements and New Features

	Improved net_kernel debug functionality.
Own Id: OTP-16458 Aux Id: PR-2525

 Kernel 6.5.1

 Fixed Bugs and Malfunctions

	The 'socket state' info provided by the inet info function has been improved
Own Id: OTP-16043 Aux Id: ERL-1036

	Fix bug where logger would crash when starting when a very large log file
needed to be rotated and compressed.
Own Id: OTP-16145 Aux Id: ERL-1034

	Fixed a bug causing actual nodedown reason reported by
net_kernel:monitor_nodes(true, [nodedown_reason])
to be lost and replaced by the reason killed.
Own Id: OTP-16216

	The documentation for rpc:call/4,5/ has been updated to describe what
happens when the called function throws or return an 'EXIT' tuple.
Own Id: OTP-16279 Aux Id: ERL-1066

 Kernel 6.5

 Fixed Bugs and Malfunctions

	The type specification for gen_sctp:connect/4,5 has been corrected.
Own Id: OTP-15344 Aux Id: ERL-947

	Extra -mode flags given to erl are ignored with a warning.
Own Id: OTP-15852

	Fix type spec for seq_trace:set_token/2.
Own Id: OTP-15858 Aux Id: ERL-700

	logger:compare_levels/2 would fail with a badarg exception if given the
values all or none as any of the parameters. This is now corrected.
Own Id: OTP-15942 Aux Id: PR-2301

	Fix bug where the log file in logger_std_h would not be closed when the
inode of the file changed. This would in turn cause a file descriptor leak
when tools like logrotate are used.
Own Id: OTP-15997 Aux Id: PR-2331

	Fix a race condition in the debugging function net_kernel:nodes_info/0.
Own Id: OTP-16022

	Fix race condition when closing a file opened in compressed or
delayed_write mode.
Own Id: OTP-16023

 Improvements and New Features

	The possibility to send ancillary data, in particular the TOS field, has been
added to gen_udp:send/4,5.
Own Id: OTP-15747 Aux Id: ERIERL-294

	If the log file was given with relative path, the standard logger handler
(logger_std_h) would store the file name with relative path. If the current
directory of the node was later changed, a new file would be created relative
the new current directory, potentially failing with an enoent if the new
directory did not exist. This is now corrected and logger_std_h always
stores the log file name as an absolute path, calculated from the current
directory at the time of the handler startup.
Own Id: OTP-15850

	Support local sockets with inet:i/0.
Own Id: OTP-15935 Aux Id: PR-2299

 Kernel 6.4.1

 Fixed Bugs and Malfunctions

	user/user_drv could respond to io requests before they had been processed,
which could cause data to be dropped if the emulator was halted soon after a
call to io:format/2, such as in an escript.
Own Id: OTP-15805

 Kernel 6.4

 Fixed Bugs and Malfunctions

	Fix so that when multiple -sname or -name are given to erl the first one
is chosen. Before this fix distribution was not started at all when multiple
name options were given.
Own Id: OTP-15786 Aux Id: ERL-918

	Fix inet_res configuration pointing to non-existing files to work again.
This was broken in KERNEL-6.3 (OTP-21.3).
Own Id: OTP-15806

 Improvements and New Features

	A simple socket API is provided through the socket module. This is a low level
API that does not replace gen_[tcp|udp|sctp]. It is intended to
eventually replace the inet driver, but not the high level gen-modules
(gen_tcp, gen_udp and gen_sctp). It also provides a basic API that facilitates
the implementation of other protocols, that is TCP, UDP and SCTP.
Known issues are; No support for the Windows OS (currently).
Own Id: OTP-14831

	Improved the documentation for the linger option.
Own Id: OTP-15491 Aux Id: PR-2019

	Global no longer tries more than once when connecting to other nodes.
Own Id: OTP-15607 Aux Id: ERIERL-280

	The dist messages EXIT, EXIT2 and MONITOR_DOWN have been updated with new
versions that send the reason term as part of the payload of the message
instead of as part of the control message.
The old versions are still present and can be used when communicating with
nodes that don't support the new versions.
Own Id: OTP-15611

	Kernel configuration parameter start_distribution = boolean() is added. If
set to false, the system is started with all distribution functionality
disabled. Defaults to true.
Own Id: OTP-15668 Aux Id: PR-2088

	In OTP-21.3, a warning was introduced for duplicated applications/keys in
configuration. This warning would be displayed both when the configuration was
given as a file on system start, and during runtime via
application:set_env/1,2.
The warning is now changed to a badarg exception in
application:set_env/1,2. If the faulty configuration is given in a
configuration file on system start, the startup will fail.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15692 Aux Id: PR-2170

 Kernel 6.3.1.3

 Fixed Bugs and Malfunctions

	Fix bug where the log file in logger_std_h would not be closed when the
inode of the file changed. This would in turn cause a file descriptor leak
when tools like logrotate are used.
Own Id: OTP-15997 Aux Id: PR-2331

 Kernel 6.3.1.2

 Improvements and New Features

	The possibility to send ancillary data, in particular the TOS field, has been
added to gen_udp:send/4,5.
Own Id: OTP-15747 Aux Id: ERIERL-294

 Kernel 6.3.1.1

 Fixed Bugs and Malfunctions

	Fix type spec for seq_trace:set_token/2.
Own Id: OTP-15858 Aux Id: ERL-700

 Kernel 6.3.1

 Fixed Bugs and Malfunctions

	Fixed a performance regression when reading files opened with the compressed
flag.
Own Id: OTP-15706 Aux Id: ERIERL-336

 Kernel 6.3

 Fixed Bugs and Malfunctions

	If for example the /etc/hosts did not come into existence until after the
kernel application had started, its content was never read. This bug has now
been corrected.
Own Id: OTP-14702 Aux Id: PR-2066

	Fix bug where doing seq_trace:reset_trace() while another process was doing
a garbage collection could cause the run-time system to segfault.
Own Id: OTP-15490

	Fix erl_epmd:port_please spec to include atom/0 and string/0.
Own Id: OTP-15557 Aux Id: PR-2117

	The Logger handler logger_std_h now keeps track of the inode of its log file
in order to re-open the file if the inode changes. This may happen, for
instance, if the log file is opened and saved by an editor.
Own Id: OTP-15578 Aux Id: ERL-850

	When user specific file modes are given to the logger handler logger_std_h,
they were earlier accepted without any control. This is now changes, so Logger
will adjust the file modes as follows:
- If raw is not found in the list, it is added.
- If none of write, append or exclusive are found in the list, append
is added.
- If none of delayed_write or {delayed_write,Size,Delay} are found in the
list, delayed_write is added.
Own Id: OTP-15602

 Improvements and New Features

	The standard logger handler, logger_std_h, now has a new internal feature
for log rotation. The rotation scheme is as follows:
The log file to which the handler currently writes always has the same name,
i.e. the name which is configured for the handler. The archived files have the
same name, but with extension ".N", where N is an integer. The newest archive
has extension ".0", and the oldest archive has the highest number.
The size at which the log file is rotated, and the number of archive files
that are kept, is specified with the handler specific configuration parameters
max_no_bytes and max_no_files respectively.
Archives can be compressed, in which case they get a ".gz" file extension
after the integer. Compression is specified with the handler specific
configuration parameter compress_on_rotate.
Own Id: OTP-15479

	The new functions logger:i/0 and logger:i/1 are added. These provide the
same information as logger:get_config/0 and other logger:get_*_config
functions, but the information is more logically sorted and more readable.
Own Id: OTP-15600

	Logger is now protected against overload due to massive amounts of log events
from the emulator or from remote nodes.
Own Id: OTP-15601

	Logger now uses os:system_time/1 instead of erlang:system_time/1 to generate
log event timestamps.
Own Id: OTP-15625

	Add functions application:set_env/1,2 and application:set_env/2. These
take a list of application configuration parameters, and the behaviour is
equivalent to calling application:set_env/4 individually for each
application/key combination, except it is more efficient.
set_env/1,2 warns about duplicated applications or keys. The warning is also
emitted during boot, if applications or keys are duplicated within one
configuration file, e.g. sys.config.
Own Id: OTP-15642 Aux Id: PR-2164

	Handler specific configuration parameters for the standard handler
logger_std_h are changed to be more intuitive and more similar to the
disk_log handler.
Earlier there was only one parameter, type, which could have the values
standard_io, standard_error, {file,FileName} or {file,FileName,Modes}.
This is now changed, so the following parameters are allowed:
type = standard_io | standard_error | file
file = file:filename()
modes = [file:mode()]
All parameters are optional. type defaults to standard_io, unless a file
name is given, in which case it defaults to file. If type is set to
file, the file name defaults to the same as the handler id.
The potential incompatibility is that logger:get_config/0 and
logger:get_handler_config/1 now returns the new parameters, even if the
configuration was set with the old variant, e.g. #{type=>{file,FileName}}.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15662

	The new configuration parameter file_check is added to the Logger handler
logger_std_h. This parameter specifies how long (in milliseconds) the
handler may wait before checking if the log file still exists and the inode is
the same as when it was opened.
The default value is 0, which means that this check is done prior to each
write operation. Setting a higher number may improve performance, but adds the
risk of losing log events.
Own Id: OTP-15663

 Kernel 6.2.1

 Fixed Bugs and Malfunctions

	Setting the recbuf size of an inet socket the buffer is also automatically
increased. Fix a bug where the auto adjustment of inet buffer size would be
triggered even if an explicit inet buffer size had already been set.
Own Id: OTP-15651 Aux Id: ERIERL-304

 Kernel 6.2

 Fixed Bugs and Malfunctions

	A new function, logger:update_handler_config/3 is added, and the handler
callback changing_config now has a new argument, SetOrUpdate, which
indicates if the configuration change comes from set_handler_config/2,3 or
update_handler_config/2,3.
This allows the handler to consistently merge the new configuration with the
old (if the change comes from update_handler_config/2,3) or with the default
(if the change comes from set_handler_config/2,3).
The built-in handlers logger_std_h and logger_disk_log_h are updated
accordingly. A bug which could cause inconsistency between the handlers'
internal state and the stored configuration is also corrected.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15364

	Fix fallback when custom erl_epmd client does not implement address_please.
Own Id: OTP-15388 Aux Id: PR-1983

	The logger ets table did not have the read_concurrency option. This is now
added.
Own Id: OTP-15453 Aux Id: ERL-782

	During system start, logger has a simple handler which prints to stdout. After
the kernel supervision is started, this handler is removed and replaced by the
default handler. Due to a bug, logger earlier issued a debug printout saying
it received an unexpected message, which was the EXIT message from the simple
handler's process. This is now corrected. The simple handler's process now
unlinks from the logger process before terminating.
Own Id: OTP-15466 Aux Id: ERL-788

	The logger handler logger_std_h would not re-create it's log file if it was
removed. Due to this it could not be used with tools like 'logrotate'. This is
now corrected.
Own Id: OTP-15469

 Improvements and New Features

	A function inet:getifaddrs/1 that takes a list with a namespace option has
been added, for platforms that support that feature, for example Linux
(only?).
Own Id: OTP-15121 Aux Id: ERIERL-189, PR-1974

	Added the nopush option for TCP sockets, which corresponds to TCP_NOPUSH
on *BSD and TCP_CORK on Linux.
This is also used internally in file:sendfile to reduce latency on
subsequent send operations.
Own Id: OTP-15357 Aux Id: ERL-698

	Optimize handling of send_delay for tcp sockes to better work with the new
pollthread implementation introduced in OTP-21.
Own Id: OTP-15471 Aux Id: ERIERL-229

 Kernel 6.1.1

 Fixed Bugs and Malfunctions

	Fix bug causing net_kernel process crash on connection attempt from node with
name identical to local node.
Own Id: OTP-15438 Aux Id: ERL-781

 Kernel 6.1

 Fixed Bugs and Malfunctions

	The values all and none are documented as valid value for the Kernel
configuration parameter logger_level, but would cause a crash during node
start. This is now corrected.
Own Id: OTP-15143

	Fix some potential buggy behavior in how ticks are sent on inter node
distribution connections. Tick is now sent to c-node even if there are unsent
buffered data, as c-nodes need ticks in order to send reply ticks. The amount
of sent data was also calculated wrongly when ticks were suppressed due to
unsent buffered data.
Own Id: OTP-15162 Aux Id: ERIERL-191

	Non semantic change in dist_util.erl to silence dialyzer warning.
Own Id: OTP-15170

	Fixed net_kernel:connect_node(node()) to return true (and do nothing) as
it always has before OTP-21.0. Also documented this successful "self connect"
as the expected behavior.
Own Id: OTP-15182 Aux Id: ERL-643

	The single_line option on logger_formatter would in some cases add an unwanted
comma after the association arrows in a map. This is now corrected.
Own Id: OTP-15228

	Improved robustness of distribution connection setup. In OTP-21.0 a truly
asynchronous connection setup was introduced. This is further improvement on
that work to make the emulator more robust and also be able to recover in
cases when involved Erlang processes misbehave.
Own Id: OTP-15297 Aux Id: OTP-15279, OTP-15280

 Improvements and New Features

	A new macro, ?LOG(Level,...), is added. This is equivalent to the existing
?LOG_<LEVEL>(...) macros.
A new variant of Logger report callback is added, which takes an extra
argument containing options for size limiting and line breaks. Module
proc_lib in STDLIB uses this for crash reports.
Logger configuration is now checked a bit more for errors.
Own Id: OTP-15132

	The socket options recvtos, recvttl, recvtclass and pktoptions have
been implemented in the socket modules. See the documentation for the
gen_tcp, gen_udp and inet modules. Note that support for these in the
runtime system is platform dependent. Especially for pktoptions which is
very Linux specific and obsoleted by the RFCs that defined it.
Own Id: OTP-15145 Aux Id: ERIERL-187

	Add logger:set_application_level/2 for setting the logger level of all
modules in one application.
Own Id: OTP-15146

 Kernel 6.0.1

 Fixed Bugs and Malfunctions

	Fixed bug in net_kernel that could cause an emulator crash if certain
connection attempts failed. Bug exists since kernel-6.0 (OTP-21.0).
Own Id: OTP-15280 Aux Id: ERIERL-226, OTP-15279

 Kernel 6.0

 Fixed Bugs and Malfunctions

	Clarify the documentation of rpc:multicall/5.
Own Id: OTP-10551

	The DNS resolver when getting econnrefused from a server retained an invalid
socket so look up towards the next server(s) also failed.
Own Id: OTP-13133 Aux Id: PR-1557

	No resolver backend returns V4Mapped IPv6 addresses any more. This was
inconsistent before, some did, some did not. To facilitate working with such
addresses a new function inet:ipv4_mapped_ipv6_address/1 has been added.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13761 Aux Id: ERL-503

	The type specifications for file:posix/0 and
inet:posix/0 have been updated according to which errors
file and socket operations should be able to return.
Own Id: OTP-14019 Aux Id: ERL-550

	Fix name resolving in IPv6 only environments when doing the initial
distributed connection.
Own Id: OTP-14501

	File operations used to accept filenames containing
null characters (integer value zero). This caused the name to be truncated and
in some cases arguments to primitive operations to be mixed up. Filenames
containing null characters inside the filename are now rejected and will
cause primitive file operations to fail.
Also environment variable operations used to accept
names and values of
environment variables containing null characters (integer value zero). This
caused operations to silently produce erroneous results. Environment variable
names and values containing null characters inside the name or value are now
rejected and will cause environment variable operations to fail.
Primitive environment variable operations also used to accept the $=
character in environment variable names causing various problems. $=
characters in environment variable names are now also rejected.
Also os:cmd/1 now reject null characters inside its
command.
erlang:open_port/2 will also reject null characters inside the port name
from now on.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14543 Aux Id: ERL-370

	os:putenv and os:getenv no longer access the process environment directly
and instead work on a thread-safe emulation. The only observable difference is
that it's not kept in sync with libc getenv(3) / putenv(3), so those who
relied on that behavior in drivers or NIFs will need to add manual
synchronization.
On Windows this means that you can no longer resolve DLL dependencies by
modifying the PATH just before loading the driver/NIF. To make this less of
a problem, the emulator now adds the target DLL's folder to the DLL search
path.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-14666

	Fixed connection tick toward primitive hidden nodes (erl_interface) that could
cause faulty tick timeout in rare cases when payload data is sent to hidden
node but not received.
Own Id: OTP-14681

	Make group react immediately on an EXIT-signal from shell in e.g ssh.
Own Id: OTP-14991 Aux Id: PR1705

	Calls to gen_tcp:send/2 on closed sockets now returns {error, closed}
instead of {error,enotconn}.
Own Id: OTP-15001

	The included_applications key are no longer duplicated as application
environment variable. Earlier, the included applications could be read both
with application:get[_all]_env(...) and application:get[_all]_key(...)
functions. Now, it can only be read with application:get[_all]_key(...).
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15071

	Owner and group changes through file:write_file_info, file:change_owner,
and file:change_group will no longer report success on permission errors.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-15118

 Improvements and New Features

	A new logging API is added to Erlang/OTP, see the logger manual page, and
section Logging in the Kernel User's Guide.
Calls to error_logger are automatically redirected to the new API, and
legacy error logger event handlers can still be used. It is, however,
recommended to use the Logger API directly when writing new code.
Notice the following potential incompatibilities:
	Kernel configuration parameters error_logger still works, but is overruled
if the default handler's output destination is configured with Kernel
configuration parameter logger.
In general, parameters for configuring error logger are overwritten by new
parameters for configuring Logger.

	The concept of SASL error logging is deprecated, meaning that by default the
SASL application does not affect which log events are logged.
By default, supervisor reports and crash reports are logged by the default
Logger handler started by Kernel, and end up at the same destination
(terminal or file) as other standard log event from Erlang/OTP.
Progress reports are not logged by default, but can be enabled by setting
the primary log level to info, for example with the Kernel configuration
parameter logger_level.
To obtain backwards compatibility with the SASL error logging functionality
from earlier releases, set Kernel configuration parameter
logger_sasl_compatible to true. This prevents the default Logger handler
from logging any supervisor-, crash-, or progress reports. Instead, SASL
adds a separate Logger handler during application start, which takes care of
these log events. The SASL configuration parameters sasl_error_logger and
sasl_errlog_type specify the destination (terminal or file) and severity
level to log for these events.

Since Logger is new in Erlang/OTP 21.0, we do reserve the right to introduce
changes to the Logger API and functionality in patches following this release.
These changes might or might not be backwards compatible with the initial
version.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13295

	The function inet:i/0 has been documented.
Own Id: OTP-13713 Aux Id: PR-1645

	Typespecs for netns and bind_to_device options have been added to
gen_tcp, gen_udp and gen_sctp functions.
Own Id: OTP-14359 Aux Id: PR-1816

	New functionality for implementation of alternative carriers for the Erlang
distribution has been introduced. This mainly consists of support for usage of
distribution controller processes (previously only ports could be used as
distribution controllers). For more information see
ERTS User's Guide ➜ How to implement an Alternative Carrier for the Erlang Distribution ➜ Distribution Module.
Own Id: OTP-14459

	seq_trace labels may now be any erlang term.
Own Id: OTP-14899

	The SSL distribution protocol -proto inet_tls has stopped setting the SSL
option server_name_indication. New verify funs for client and server in
inet_tls_dist has been added, not documented yet, that checks node name if
present in peer certificate. Usage is still also yet to be documented.
Own Id: OTP-14969 Aux Id: OTP-14465, ERL-598

	Changed timeout of gen_server calls to auth server from default 5 seconds
to infinity.
Own Id: OTP-15009 Aux Id: ERL-601

	The callback module passed as -epmd_module to erl has been expanded to be
able to do name and port resolving.
Documentation has also been added in the erl_epmd reference manual and
ERTS User's Guide
How to Implement an Alternative Node Discovery for Erlang Distribution.
Own Id: OTP-15086 Aux Id: PR-1694

	Included config file specified with relative path in sys.config are now first
searched for relative to the directory of sys.config itself. If not found, it
is also searched for relative to the current working directory. The latter is
for backwards compatibility.
Own Id: OTP-15137 Aux Id: PR-1838

 Kernel 5.4.3.2

 Fixed Bugs and Malfunctions

	Non semantic change in dist_util.erl to silence dialyzer warning.
Own Id: OTP-15170

 Kernel 5.4.3.1

 Fixed Bugs and Malfunctions

	Fix some potential buggy behavior in how ticks are sent on inter node
distribution connections. Tick is now sent to c-node even if there are unsent
buffered data, as c-nodes need ticks in order to send reply ticks. The amount
of sent data was calculated wrongly when ticks where suppressed due to unsent
buffered data.
Own Id: OTP-15162 Aux Id: ERIERL-191

 Kernel 5.4.3

 Fixed Bugs and Malfunctions

	Correct a few contracts.
Own Id: OTP-14889

	Reject loading modules with names containing directory separators ('/' or '\'
on Windows).
Own Id: OTP-14933 Aux Id: ERL-564, PR-1716

	Fix bug in handling of os:cmd/2 option max_size on windows.
Own Id: OTP-14940

 Kernel 5.4.2

 Fixed Bugs and Malfunctions

	Add os:cmd/2 that takes an options map as the second argument.
Add max_size as an option to os:cmd/2 that control the maximum size of the
result that os:cmd/2 will return.
Own Id: OTP-14823

 Kernel 5.4.1

 Fixed Bugs and Malfunctions

	Refactored an internal API.
Own Id: OTP-14784

 Kernel 5.4

 Fixed Bugs and Malfunctions

	Processes which did output after switching jobs (Ctrl+G) could be left forever
stuck in the io request.
Own Id: OTP-14571 Aux Id: ERL-472

 Improvements and New Features

	Lock counting can now be fully toggled at runtime in the lock counting
emulator (-emu_type lcnt). Everything is enabled by default to match the old
behavior, but specific categories can be toggled at will with minimal runtime
overhead when disabled. Refer to the documentation on lcnt:rt_mask/1 for
details.
Own Id: OTP-13170

	lcnt:collect and lcnt:clear will no longer block all other threads in the
runtime system.
Own Id: OTP-14412

	General Unicode improvements.
Own Id: OTP-14462

 Kernel 5.3.1

 Fixed Bugs and Malfunctions

	The documentation for the 'quiet' option in disk_log:open/1 had an incorrect
default value.
Own Id: OTP-14498

 Kernel 5.3

 Fixed Bugs and Malfunctions

	Function inet:ntoa/1 has been fixed to return lowercase letters according to
RFC 5935 that has been approved after this function was written. Previously
uppercase letters were returned so this may be a backwards incompatible change
depending on how the returned address string is used.
Function inet:parse_address/1 has been fixed to accept %-suffixes on scoped
addresses. The addresses does not work yet, but gives no parse errors.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13006 Aux Id: ERIERL-20, ERL-429

	Fix bug where gethostname would incorrectly fail with enametoolong on Linux.
Own Id: OTP-14310

	Fix bug causing code:is_module_native to falsely return true when local
call trace is enabled for the module.
Own Id: OTP-14390

	Add early reject of invalid node names from distributed nodes.
Own Id: OTP-14426

 Improvements and New Features

	Since Unicode is now allowed in atoms an extra check is needed for node names,
which are restricted to Latin-1.
Own Id: OTP-13805

	Replaced usage of deprecated symbolic time unit
representations.
Own Id: OTP-13831 Aux Id: OTP-13735

	file:write_file(Name, Data, [raw]) would turn Data into a single binary
before writing. This meant it could not take advantage of the writev()
system call if it was given a list of binaries and told to write with raw
mode.
Own Id: OTP-13909

	The performance of the disk_log has been somewhat improved in some corner
cases (big items), and the documentation has been clarified.
Own Id: OTP-14057 Aux Id: PR-1245

	Functions for detecting changed code has been added. code:modified_modules/0
returns all currently loaded modules that have changed on disk.
code:module_status/1 returns the status for a module. In the shell and in
c module, mm/0 is short for code:modified_modules/0, and lm/0 reloads
all currently loaded modules that have changed on disk.
Own Id: OTP-14059

	Introduce an event manager in Erlang to handle OS signals. A subset of OS
signals may be subscribed to and those are described in the Kernel
application.
Own Id: OTP-14186

	Sockets can now be bound to device (SO_BINDTODEVICE) on platforms where it is
supported.
This has been implemented e.g to support VRF-Lite under Linux; see
VRF , and
GitHub pull request #1326.
Own Id: OTP-14357 Aux Id: PR-1326

	Added option to store shell_history on disk so that the history can be reused
between sessions.
Own Id: OTP-14409 Aux Id: PR-1420

	The size of crash reports created by gen_server, gen_statem and proc_lib
is limited with aid of the Kernel application variable
error_logger_format_depth. The purpose is to limit the size of the messages
sent to the error_logger process when processes with huge message queues or
states crash.
The crash report generated by proc_lib includes the new tag
message_queue_len. The neighbour report also includes the new tag
current_stacktrace. Finally, the neighbour report no longer includes the
tags messages and dictionary.
The new function error_logger:get_format_depth/0 can be used to retrieve the
value of the Kernel application variable error_logger_format_depth.
Own Id: OTP-14417

	One of the ETS tables used by the global module is created with
{read_concurrency, true} in order to reduce contention.
Own Id: OTP-14419

	Warnings have been added to the relevant documentation about not using
un-secure distributed nodes in exposed environments.
Own Id: OTP-14425

 Kernel 5.2

 Fixed Bugs and Malfunctions

	Fix a race during cleanup of os:cmd that would cause os:cmd to hang
indefinitely.
Own Id: OTP-14232 Aux Id: seq13275

 Improvements and New Features

	The functions in the 'file' module that take a list of paths (e.g.
file:path_consult/2) will now continue to search in the path if the path
contains something that is not a directory.
Own Id: OTP-14191

	Two OTP processes that are known to receive many messages are 'rex' (used by
'rpc') and 'error_logger'. Those processes will now store unprocessed messages
outside the process heap, which will potentially decrease the cost of garbage
collections.
Own Id: OTP-14192

 Kernel 5.1.1

 Fixed Bugs and Malfunctions

	code:add_pathsa/1 and command line option -pa both revert the given list
of directories when adding it at the beginning of the code path. This is now
documented.
Own Id: OTP-13920 Aux Id: ERL-267

	Add lost runtime dependency to erts-8.1. This should have been done in
kernel-5.1 (OTP-19.1) as it cannot run without at least erts-8.1 (OTP-19.1).
Own Id: OTP-14003

	Type and doc for gen_{tcp,udp,sctp}:controlling_process/2 has been
improved.
Own Id: OTP-14022 Aux Id: PR-1208

 Kernel 5.1

 Fixed Bugs and Malfunctions

	Fix a memory leak when calling seq_trace:get_system_tracer().
Own Id: OTP-13742

	Fix for the problem that when adding the ebin directory of an application to
the code path, the code:priv_dir/1 function returns an incorrect path to the
priv directory of the same application.
Own Id: OTP-13758 Aux Id: ERL-195

	Fix code_server crash when adding code paths of two levels.
Own Id: OTP-13765 Aux Id: ERL-194

	Respect -proto_dist switch while connection to EPMD
Own Id: OTP-13770 Aux Id: PR-1129

	Fixed a bug where init:stop could deadlock if a process with infinite shutdown
timeout (e.g. a supervisor) attempted to load code while terminating.
Own Id: OTP-13802

	Close stdin of commands run in os:cmd. This is a backwards compatibility fix
that restores the behaviour of pre 19.0 os:cmd.
Own Id: OTP-13867 Aux Id: seq13178

 Improvements and New Features

	Add net_kernel:setopts/2 and net_kernel:getopts/2 to control options for
distribution sockets in runtime.
Own Id: OTP-13564

	Rudimentary support for DSCP has been implemented in the guise of a tclass
socket option for IPv6 sockets.
Own Id: OTP-13582

 Kernel 5.0.2

 Fixed Bugs and Malfunctions

	When calling os:cmd from a process that has set trap_exit to true an 'EXIT'
message would be left in the message queue. This bug was introduced in kernel
vsn 5.0.1.
Own Id: OTP-13813

 Kernel 5.0.1

 Fixed Bugs and Malfunctions

	Fix a os:cmd bug where creating a background job using & would cause os:cmd to
hang until the background job terminated or closed its stdout and stderr file
descriptors. This bug has existed from kernel 5.0.
Own Id: OTP-13741

 Kernel 5.0

 Fixed Bugs and Malfunctions

	The handling of on_load functions has been improved. The major improvement
is that if a code upgrade fails because the on_load function fails, the
previous version of the module will now be retained.
Own Id: OTP-12593

	rpc:call() and rpc:block_call() would sometimes cause an exception (which
was not mentioned in the documentation). This has been corrected so that
{badrpc,Reason} will be returned instead.
Own Id: OTP-13409

	On Windows, for modules that were loaded early (such as the lists module),
code:which/1 would return the path with mixed slashes and backslashes, for
example: "C:\\Program Files\\erl8.0/lib/stdlib-2.7/ebin/lists.beam". This
has been corrected.
Own Id: OTP-13410

	Make file:datasync use fsync instead of fdatasync on Mac OSX.
Own Id: OTP-13411

	The default chunk size for the fallback sendfile implementation, used on
platforms that do not have a native sendfile, has been decreased in order to
reduce connectivity issues.
Own Id: OTP-13444

	Large file writes (2Gb or more) could fail on some Unix platforms (for
example, OS X and FreeBSD).
Own Id: OTP-13461

	A bug has been fixed where the DNS resolver inet_res did not refresh its view
of the contents of for example resolv.conf immediately after start and hence
then failed name resolution. Reported and fix suggested by Michal Ptaszek in
GitHUB pull req #949.
Own Id: OTP-13470 Aux Id: Pull #969

	Fix process leak from global_group.
Own Id: OTP-13516 Aux Id: PR-1008

	The function inet:gethostbyname/1 now honors the resolver option inet6
instead of always looking up IPv4 addresses.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13622 Aux Id: PR-1065

	The Status argument to init:stop/1 is now sanity checked to make sure
erlang:halt does not fail.
Own Id: OTP-13631 Aux Id: PR-911

 Improvements and New Features

	Add {line_delim, byte()} option to inet:setopts/2 and decode_packet/3
Own Id: OTP-12837

	Added os:perf_counter/1.
The perf_counter is a very very cheap and high resolution timer that can be
used to timestamp system events. It does not have monoticity guarantees, but
should on most OS's expose a monotonous time.
Own Id: OTP-12908

	The os:cmd call has been optimized on unix platforms to be scale better with
the number of schedulers.
Own Id: OTP-13089

	New functions that can load multiple modules at once have been added to the
'code' module. The functions are code:atomic_load/1,
code:prepare_loading/1, code:finish_loading/1, and
code:ensure_modules_loaded/1.
Own Id: OTP-13111

	The code path cache feature turned out not to be very useful in practice and
has been removed. If an attempt is made to enable the code path cache, there
will be a warning report informing the user that the feature has been removed.
Own Id: OTP-13191

	When an attempt is made to start a distributed Erlang node with the same name
as an existing node, the error message will be much shorter and easier to read
than before. Example:
Protocol 'inet_tcp': the name somename@somehost seems to be in use by another Erlang node
Own Id: OTP-13294

	The output of the default error logger is somewhat prettier and easier to
read. The default error logger is used during start-up of the OTP system. If
the start-up fails, the output will be easier to read.
Own Id: OTP-13325

	The functions rpc:safe_multi_server_call/2,3 that were deprecated in R12B
have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13449

	Update the error reasons in dist_util, and show them in the logs if
net_kernel:verbose(1) has been called.
Own Id: OTP-13458

	Experimental support for Unix Domain Sockets has been implemented. Read the
sources if you want to try it out. Example:
gen_udp:open(0, [{ifaddr,{local,"/tmp/socket"}}]). Documentation will be
written after user feedback on the experimental API.
Own Id: OTP-13572 Aux Id: PR-612

	Allow heart to be configured to not kill the previous emulator before calling
the HEART_COMMAND. This is done by setting the environment variable
HEART_NO_KILL to TRUE.
Own Id: OTP-13650

 Kernel 4.2

 Fixed Bugs and Malfunctions

	code:load_abs([10100]) would bring down the entire runtime system and create
a crash dump. Corrected to generate an error exception in the calling process.
Also corrected specs for code loading functions and added more information in
the documentation about the error reasons returned by code-loading functions.
Own Id: OTP-9375

	gen_tcp:accept/2 was not
time warp safe. This since
it used the same time as returned by erlang:now/0 when calculating timeout.
This has now been fixed.
Own Id: OTP-13254 Aux Id: OTP-11997, OTP-13222

	Correct the contract for inet:getifaddrs/1.
Own Id: OTP-13335 Aux Id: ERL-95

 Improvements and New Features

	Time warp safety improvements.
Introduced the options monotonic_timestamp, and strict_monotonic_timestamp
to the trace, sequential trace, and system profile functionality. This since
the already existing timestamp option is not time warp safe.
Introduced the option safe_fixed_monotonic_time to ets:info/2 and
dets:info/2. This since the already existing safe_fixed option is not time
warp safe.
Own Id: OTP-13222 Aux Id: OTP-11997

	Add validation callback for heart
The erlang heart process may now have a validation callback installed. The
validation callback will be executed, if present, before any heartbeat to
heart port program. If the validation fails, or stalls, no heartbeat will be
sent and the node will go down.
With the option 'check_schedulers' heart executes a responsiveness check of
the schedulers before a heartbeat is sent to the port program. If the
responsiveness check fails, the heartbeat will not be performed (as intended).
Own Id: OTP-13250

	Clarify documentation of net_kernel:allow/1
Own Id: OTP-13299

	EPMD supports both IPv4 and IPv6
Also affects oldest supported windows version.
Own Id: OTP-13364

 Kernel 4.1.1

 Fixed Bugs and Malfunctions

	Host name lookups though inet_res, the Erlang DNS resolver, are now done case
insensitively according to RFC 4343. Patch by Holger Weiß.
Own Id: OTP-12836

	IPv6 distribution handler has been updated to share code with IPv4 so that all
features are supported in IPv6 as well. A bug when using an IPv4 address as
hostname has been fixed.
Own Id: OTP-13040

	Caching of host names in the internal DNS resolver inet_res has been made
character case insensitive for host names according to RFC 4343.
Own Id: OTP-13083

	Cooked file mode buffering has been fixed so file:position/2 now works
according to Posix on Posix systems i.e. when file:position/2 returns an error
the file pointer is unaffected.
The Windows system documentation, however, is unclear on this point so the
documentation of file:position/2 still does not promise anything.
Cooked file mode file:pread/2,3 and file:pwrite/2,3 have been corrected to
honor character encoding like the combination of file:position/2 and
file:read/2 or file:write/2 already does. This is probably not very useful
since the character representation on the caller's side is latin1, period.
Own Id: OTP-13155 Aux Id: PR#646

 Improvements and New Features

	Add {line_delim, byte()} option to inet:setopts/2 and decode_packet/3
Own Id: OTP-12837

 Kernel 4.1

 Improvements and New Features

	A mechanism for limiting the amount of text that the built-in error logger
events will produce has been introduced. It is useful for limiting both the
size of log files and the CPU time used to produce them.
This mechanism is experimental in the sense that it may be changed if it turns
out that it does not solve the problem it is supposed to solve. In that case,
there may be backward incompatible improvements to this mechanism.
See the documentation for the config parameter error_logger_format_depth in
the Kernel application for information about how to turn on this feature.
Own Id: OTP-12864

 Kernel 4.0

 Fixed Bugs and Malfunctions

	Fix error handling in file:read_line/1 for Unicode contents.
Own Id: OTP-12144

	Introduce os:getenv/2 which is similar to os:getenv/1 but returns the
passed default value if the required environment variable is undefined.
Own Id: OTP-12342

	It is now possible to paste text in JCL mode (using Ctrl-Y) that has been
copied in the previous shell session. Also a bug that caused the JCL mode to
crash when pasting text has been fixed.
Own Id: OTP-12673

	Ensure that each segment of an IPv6 address when parsed from a string has a
maximum of 4 hex digits
Own Id: OTP-12773

 Improvements and New Features

	New BIF: erlang:get_keys/0, lists all keys associated with the process
dictionary. Note: erlang:get_keys/0 is auto-imported.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12151 Aux Id: seq12521

	The internal group to user_drv protocol has been changed to be synchronous in
order to guarantee that output sent to a process implementing the user_drv
protocol is printed before replying. This protocol is used by the
standard_output device and the ssh application when acting as a client.
This change changes the previous unlimited buffer when printing to standard_io
and other devices that end up in user_drv to 1KB.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12240

	The inflateInit/2 and deflateInit/6 functions now accepts a WindowBits
argument equal to 8 and -8.
Own Id: OTP-12564

	Map error logger warnings to warning messages by default.
Own Id: OTP-12755

	Map beam error logger warnings to warning messages by default. Previously
these messages were mapped to the error channel by default.
Own Id: OTP-12781

	gen_tcp:shutdown/2 is now asynchronous
This solves the following problems with the old implementation:
It doesn't block when the TCP peer is idle or slow. This is the expected
behaviour when shutdown() is called: the caller needs to be able to continue
reading from the socket, not be prevented from doing so.
It doesn't truncate the output. The current version of gen_tcp:shutdown/2 will
truncate any outbound data in the driver queue after about 10 seconds if the
TCP peer is idle of slow. Worse yet, it doesn't even inform anyone that the
data has been truncated: 'ok' is returned to the caller; and a FIN rather than
an RST is sent to the TCP peer.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-12797

	There are many cases where user code needs to be able to distinguish between a
socket that was closed normally and one that was aborted. Setting the option
{show_econnreset, true} enables the user to receive ECONNRESET errors on
both active and passive sockets.
Own Id: OTP-12843

 Kernel 3.2.0.1

 Fixed Bugs and Malfunctions

	The 'raw' socket option could not be used multiple times in one call to any
e.g gen_tcp function because only one of the occurrences were used. This bug
has been fixed, and also a small bug concerning propagating error codes from
within inet:setopts/2.
Own Id: OTP-11482 Aux Id: seq12872

 Kernel 3.2

 Fixed Bugs and Malfunctions

	A bug causing an infinite loop in hostname resolving has been corrected. To
trigger this bug you would have to enter an bogus search method from a
configuration file e.g .inetrc.
Bug pinpointed by Emil Holmström
Own Id: OTP-12133

	The standard_error process now handles the getopts I/O protocol request
correctly and stores its encoding in the same way as standard_io.
Also, io:put_chars(standard_error, [oops]) could previously crash the
standard_error process. This is now corrected.
Own Id: OTP-12424

 Improvements and New Features

	Configuration parameters for the Kernel application that allows setting socket
options for the distribution sockets have been added. See the application
Kernel documentation; parameters 'inet_dist_listen_options' and
'inet_dist_connect_options'.
Own Id: OTP-12476 Aux Id: OTP-12476

 Kernel 3.1

 Fixed Bugs and Malfunctions

	Make sure to install .hrl files when needed
Own Id: OTP-12197

	Removed the undocumented application environment variable 'raw_files' from the
kernel application. This variable was checked (by call to
application:get_env/2) each time a raw file was to be opened in the file
module.
Own Id: OTP-12276

	A bug has been fixed when using the netns option to gen_udp, which
accidentally only worked if it was the last option.
Own Id: OTP-12314

 Improvements and New Features

	Updated documentation for inet buffer size options.
Own Id: OTP-12296

	Introduce new option 'raw' in file_info and link_info functions. This option
allows the caller not to go through the file server for information about
files guaranteed to be local.
Own Id: OTP-12325

 Kernel 3.0.3

 Fixed Bugs and Malfunctions

	Accept inet:ip_address() in net_adm:names/1
Own Id: OTP-12154

 Kernel 3.0.2

 Fixed Bugs and Malfunctions

	OTP-11850 fixed filelib:wildcard/1 to work with broken symlinks. This
correction, however, introduced problems since symlinks were no longer
followed for functions like filelib:ensure_dir/1, filelib:is_dir/1,
filelib:file_size/1, etc. This is now corrected.
Own Id: OTP-12054 Aux Id: seq12660

 Kernel 3.0.1

 Fixed Bugs and Malfunctions

	If the Config given to application_controller:change_application_data included
other config files, it was only expanded for already existing (loaded)
applications. If an upgrade added a new application which had config data in
an included config file, the new application did not get correct config data.
This is now changed so config data will be expanded for all applications.
Own Id: OTP-11864

	It was allowed to re-load pre-loaded modules such as erlang, but that could
cause strange and unwanted things to happen, such as call
apply/3 to loop. Pre-loaded modules are now sticky by default.
(Thanks to Loïc Hoguin for reporting this bug.)
code:add_path("/ending/in/slash/") removes the trailing slash, adding
/ending/in/slash to the code path. However,
code:del_path("/ending/in/slash/") would fail to remove the path since it
did not remove the trailing slash. This has been fixed.
Own Id: OTP-11913

	Fix erts_debug:size/1 to handle Map sizes
Own Id: OTP-11923

	The documentation for file:file_info/1 has been removed. The function itself
was removed a long time ago.
Own Id: OTP-11982

 Kernel 3.0

 Fixed Bugs and Malfunctions

	Fixed a deadlock possibility in terminate application
Own Id: OTP-11171

	Fixed bug where sendfile would return the wrong error code for a remotely
closed socket if the socket was in passive mode. (Thanks to Vincent Siliakus
for reporting the bug.)
Own Id: OTP-11614

	The new option persistent is added to application:set_env/4 and
application:unset_env/3. An environment key set with the persistent option
will not be overridden by the ones configured in the application resource file
on load. This means persistent values will stick after the application is
loaded and also on application reload. (Thanks to José Valim)
Own Id: OTP-11708

	The spec for file:set_cwd/1 is modified to also accept binaries as arguments.
This has always been allowed in the code, but it was not reflected in the spec
since binaries are mostly used for raw file names. Raw file names are names
that are not encoded according to file:native_name_encoding(), and these are
not allowed in file:set_cwd/1. The spec is now, however, more allowing in
order to avoid unnecessary dialyzer warnings. Raw file names will still fail
in runtime with reason 'no_translation'. (Thanks to José Valim)
Own Id: OTP-11787

 Improvements and New Features

	heart:set_cmd/1 is updated to allow unicode code points > 255 in the given
heart command
Own Id: OTP-10843

	Dialyzer's unmatched_return warnings have been corrected.
Own Id: OTP-10908

	Make erlang:open_port/2 spawn and spawn_executable handle unicode.
Own Id: OTP-11105

	Erlang/OTP has been ported to the realtime operating system OSE. The port
supports both smp and non-smp emulator. For details around the port and how to
started see the User's Guide in the ose application.
Note that not all parts of Erlang/OTP has been ported.
Notable things that work are: non-smp and smp emulators, OSE signal
interaction, crypto, asn1, run_erl/to_erl, tcp, epmd, distribution and most if
not all non-os specific functionality of Erlang.
Notable things that does not work are: udp/sctp, os_mon, erl_interface,
binding of schedulers.
Own Id: OTP-11334

	Add the {active,N} socket option for TCP, UDP, and SCTP, where N is an
integer in the range -32768..32767, to allow a caller to specify the number of
data messages to be delivered to the controlling process. Once the socket's
delivered message count either reaches 0 or is explicitly set to 0 with
inet:setopts/2 or by including {active,0} as an option when the socket is
created, the socket transitions to passive ({active, false}) mode and the
socket's controlling process receives a message to inform it of the
transition. TCP sockets receive {tcp_passive,Socket}, UDP sockets receive
{udp_passive,Socket} and SCTP sockets receive {sctp_passive,Socket}.
The socket's delivered message counter defaults to 0, but it can be set using
{active,N} via any gen_tcp, gen_udp, or gen_sctp function that takes socket
options as arguments, or via inet:setopts/2. New N values are added to the
socket's current counter value, and negative numbers can be used to reduce the
counter value. Specifying a number that would cause the socket's counter value
to go above 32767 causes an einval error. If a negative number is specified
such that the counter value would become negative, the socket's counter value
is set to 0 and the socket transitions to passive mode. If the counter value
is already 0 and inet:setopts(Socket, [{active,0}]) is specified, the
counter value remains at 0 but the appropriate passive mode transition message
is generated for the socket.
Thanks to Steve Vinoski
Own Id: OTP-11368

	A call to either the garbage_collect/1 BIF or the
check_process_code/2 BIF may trigger garbage
collection of another processes than the process calling the BIF. The previous
implementations performed these kinds of garbage collections without
considering the internal state of the process being garbage collected. In
order to be able to more easily and more efficiently implement yielding native
code, these types of garbage collections have been rewritten. A garbage
collection like this is now triggered by an asynchronous request signal, the
actual garbage collection is performed by the process being garbage collected
itself, and finalized by a reply signal to the process issuing the request.
Using this approach processes can disable garbage collection and yield without
having to set up the heap in a state that can be garbage collected.
The garbage_collect/2, and
check_process_code/3 BIFs have been
introduced. Both taking an option list as last argument. Using these, one can
issue asynchronous requests.
code:purge/1 and code:soft_purge/1 have been rewritten to utilize
asynchronous check_process_code requests in order to parallelize work.
Characteristics impact: A call to the
garbage_collect/1 BIF or the
check_process_code/2 BIF will normally take longer
time to complete while the system as a whole won't be as much negatively
effected by the operation as before. A call to code:purge/1 and
code:soft_purge/1 may complete faster or slower depending on the state of
the system while the system as a whole won't be as much negatively effected by
the operation as before.
Own Id: OTP-11388 Aux Id: OTP-11535, OTP-11648

	Add sync option to file:open/2.
The sync option adds the POSIX O_SYNC flag to the open system call on
platforms that support the flag or its equivalent, e.g.,
FILE_FLAG_WRITE_THROUGH on Windows. For platforms that don't support it,
file:open/2 returns {error, enotsup} if the sync option is passed in. Thank
to Steve Vinoski and Joseph Blomstedt
Own Id: OTP-11498

	The contract of inet:ntoa/1 has been corrected.
Thanks to Max Treskin.
Own Id: OTP-11730

 Kernel 2.16.4.1

 Known Bugs and Problems

	When using gen_tcp:connect and the fd option with port and/or ip, the
port and ip options were ignored. This has been fixed so that if port
and/or ip is specified together with fd a bind is requested for that fd.
If port and/or ip is not specified bind will not be called.
Own Id: OTP-12061

 Kernel 2.16.4

 Fixed Bugs and Malfunctions

	Fix the typespec for the inet:ifget/2 and inet:ifget/3 return value. Thanks to
Ali Sabil.
Own Id: OTP-11377

	Fix various typos in erts, kernel and ssh. Thanks to Martin Hässler.
Own Id: OTP-11414

	Fix rpc multicall sample code. Thanks to Edwin Fine.
Own Id: OTP-11471

	Under rare circumstances a process calling inet:close/1, gen_tcp:close/1,
gen_udp:close/1, or gen_sctp:close/1 could hang in the call indefinitely.
Own Id: OTP-11491

 Improvements and New Features

	Add more SCTP errors as described in RFC 4960. Thanks to Artem Teslenko.
Own Id: OTP-11379

	Add new BIF os:unsetenv/1 which deletes an environment variable. Thanks to
Martin Hässler.
Own Id: OTP-11446

 Kernel 2.16.3

 Fixed Bugs and Malfunctions

	Fix indentation of User switch command help in Erlang shell. Thanks to Sylvain
Benner.
Own Id: OTP-11209

 Improvements and New Features

	The previous undocumented function ntoa/1 has been added to inet docs and
exported in the inet module.
Own Id: OTP-10676 Aux Id: OTP-10314

	Fix typo in abcast() function comment. Thanks to Johannes Weissl.
Own Id: OTP-11219

	Add application:ensure_all_started/1-2. Thanks to Fred Hebert.
Own Id: OTP-11250

	Make edlin understand a few important control keys. Thanks to Stefan
Zegenhagen.
Own Id: OTP-11251

	Cleanup of hipe_unified_loader, eliminating uses of is_subtype/2 in specs,
change module-local void functions to return 'ok' instead of [] and made sure
there are no dialyzer warnings with --Wunmatched_returns. Thanks to Kostis
Sagonas.
Own Id: OTP-11301

 Kernel 2.16.2

 Fixed Bugs and Malfunctions

	A bug in prim_inet has been corrected. If the port owner was killed at a bad
time while closing the socket port the port could become orphaned hence
causing port and socket leaking. Reported by Fred Herbert, Dmitry Belyaev and
others.
Own Id: OTP-10497 Aux Id: OTP-10562

	A few bugs regarding case sensitivity for hostname resolution while using e.g
the internal lookup types 'file' and 'dns' has been corrected. When looking up
hostnames ASCII letters a-z are to be regarded as the same as A-Z according to
RFC 4343 "Domain Name System (DNS) Case Insensitivity Clarification", and this
was not always the case.
Own Id: OTP-10689 Aux Id: seq12227

 Improvements and New Features

	Add application:ensure_started/1,2. It is equivavlent to
application:start/1,2 except it returns ok for already started
applications.
Own Id: OTP-10910

	Optimize communication with file io server. Thanks to Anthony Ramine.
Own Id: OTP-11040

	Erlang source files with non-ASCII characters are now encoded in UTF-8
(instead of latin1).
Own Id: OTP-11041 Aux Id: OTP-10907

	Optimization of simultaneous inet_db operations on the same socket by using
a lock free implementation.
Impact on the characteristics of the system: Improved performance.
Own Id: OTP-11074

	The high_msgq_watermark and low_msgq_watermark inet socket options
introduced in OTP-R16A could only be set on TCP sockets. These options are now
generic and can be set on all types of sockets.
Own Id: OTP-11075 Aux Id: OTP-10336

	Fix deep list argument error under Windows in os:cmd/1. Thanks to Aleksandr
Vinokurov .
Own Id: OTP-11104

 Kernel 2.16.1

 Fixed Bugs and Malfunctions

	A bug that could cause a crash with wrong reason has been corrected in the
application_controller module.
Own Id: OTP-10754

	Fix code:is_module_native/1 that sometimes in R16A returned false for hipe
compiled modules containing BIFs such as lists.
Own Id: OTP-10870

	Respect {exit_on_close,false} option on tcp socket in non-passive mode when
receiving fails (due to an ill-formed packet for example) by only doing a half
close and still allow sending on the socket. (Thanks to Anthony Molinaro and
Steve Vinoski for reporting the problem)
Own Id: OTP-10879

 Improvements and New Features

	Slightly nicer error message when node start fails due to duplicate name.
Thanks to Magnus Henoch.
Own Id: OTP-10797

	Miscellaneous updates due to Unicode support.
Own Id: OTP-10820

	Add a new function code:get_mode() can be used to detect how the code servers
behaves. Thanks to Vlad Dumitrescu
Own Id: OTP-10823

	Fix type of error Reason on gen_tcp:send/2. Thanks to Sean Cribbs.
Own Id: OTP-10839

	file:list_dir_all/1 and file:read_link_all/1 that can handle raw file
names have been added. See the User Guide for STDLIB for information about raw
file names.
Own Id: OTP-10852

 Kernel 2.16

 Fixed Bugs and Malfunctions

	It is no longer possible to have {Mod,Vsn} in the 'modules' list in a .app
file.
This was earlier possible, although never documented in the .app file
reference manual. It was however visible in the documentation of
application:load/[1,2], where the same term as in a .app file can be used as
the first argument.
The possibility has been removed since the Vsn part was never used.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10417

	The contract of erl_ddll:format_error/1 has been corrected. (Thanks to
Joseph Wayne Norton.)
Own Id: OTP-10473

	Change printout of application crash message on startup to formatted strings
(Thanks to Serge Aleynikov)
Own Id: OTP-10620

	The type ascii_string() in the base64 module has been corrected. The type
file:file_info() has been cleaned up. The type
file:fd() has been made opaque in the documentation.
Own Id: OTP-10624 Aux Id: kunagi-352 [263]

 Improvements and New Features

	Inet exported functionality
inet:parse_ipv4_address/1, inet:parse_ipv4strict_address/1,
inet:parse_ipv6_address/1, inet:parse_ipv6strict_address/1,
inet:parse_address/1 and inet:parse_strict_address is now exported from the
inet module.
Own Id: OTP-8067 Aux Id: kunagi-274 [185]

	A boolean socket option 'ipv6_v6only' for IPv6 sockets has been added. The
default value of the option is OS dependent, so applications aiming to be
portable should consider using {ipv6_v6only,true} when creating an inet6
listening/destination socket, and if necessary also create an inet socket on
the same port for IPv4 traffic. See the documentation.
Own Id: OTP-8928 Aux Id: kunagi-193 [104]

	Support for Unicode has been implemented.
Own Id: OTP-10302

	The documentation for global:register_name/3 has been updated to mention
that the use of {Module,Function} as the method argument (resolve function)
is deprecated.
Own Id: OTP-10419

	Fixed bug where sendfile on oracle solaris would return an error when a
partial send was done.
Own Id: OTP-10549

	The error_handler module will now call '$handle_undefined_function'/2 if
an attempt is made to call a non-existing function in a module that exists.
See the documentation for error_handler module for details.
Own Id: OTP-10617 Aux Id: kunagi-340 [251]

	Where necessary a comment stating encoding has been added to Erlang files. The
comment is meant to be removed in Erlang/OTP R17B when UTF-8 becomes the
default encoding.
Own Id: OTP-10630

	Do not return wrong terms unnecessarily. (Thanks to Kostis Sagonas.)
Own Id: OTP-10662

	Some examples overflowing the width of PDF pages have been corrected.
Own Id: OTP-10665

	Add file:allocate/3 operation
This operation allows pre-allocation of space for files. It succeeds only on
systems that support such operation. (Thanks to Filipe David Manana)
Own Id: OTP-10680

	Add application:get_key/3. The new function provides a default value for a
configuration parameter. Thanks to Serge Aleynikov.
Own Id: OTP-10694

	Add search to Erlang shell's history. Thanks to Fred Herbert.
Own Id: OTP-10739

 Kernel 2.15.3

 Fixed Bugs and Malfunctions

	Ensure 'erl_crash.dump' when asked for it. This will change erl_crash.dump
behaviour.
* Not setting ERL_CRASH_DUMP_SECONDS will now terminate beam immediately on a
crash without writing a crash dump file.
* Setting ERL_CRASH_DUMP_SECONDS to 0 will also terminate beam immediately on
a crash without writing a crash dump file, i.e. same as not setting
ERL_CRASH_DUMP_SECONDS environment variable.
* Setting ERL_CRASH_DUMP_SECONDS to a negative value will let the beam wait
indefinitely on the crash dump file being written.
* Setting ERL_CRASH_DUMP_SECONDS to a positive value will let the beam wait
that many seconds on the crash dump file being written.
A positive value will set an alarm/timeout for restart both in beam and in
heart if heart is running.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-10422 Aux Id: kunagi-250 [161]

 Kernel 2.15.2

 Fixed Bugs and Malfunctions

	Fixed issue where using controlling_process/2 with self() as the second
argument caused the port to leak if self() crashes. (Thanks to Ricardo
Catalinas Jiménez)
Own Id: OTP-10094

	When sending large files using the file:sendfile fallback file:sendfile would
crash. This is now fixed.
Own Id: OTP-10098

	Fix rpc:call/5 for local calls with a finite Timeout (Thanks to Tomer
Chachamu)
Own Id: OTP-10149

	fix escript/primary archive reloading
If the mtime of an escript/primary archive file changes after being added to
the code path, correctly reload the archive and update the cache. (Thanks to
Tuncer Ayaz)
Own Id: OTP-10151

	Support added for home directories named with non-ASCII characters (codepoints
above 127) on a system running in Unicode file mode (e.g. on MacOSX or Linux
with startup arguments +fnu or +fna with the right LOCALE). Also environment
variables with Unicode content are supported in applicable environments.
Own Id: OTP-10160

	Allow mixed IPv4 and IPv6 addresses to sctp_bindx
Also allow mixed address families to bind, since the first address on a
multihomed sctp socket must be bound with bind, while the rest are to be bound
using sctp_bindx. At least Linux supports adding address of mixing families.
Make inet_set_faddress function available also when HAVE_SCTP is not defined,
since we use it to find an address for bind to be able to mix ipv4 and ipv6
addresses. Thanks to Tomas Abrahamsson
Own Id: OTP-10217

 Improvements and New Features

	Document inet options: high_watermark, priority, linger and a some other
options that previously was undocumented.
Own Id: OTP-10053

	Remove bit8 option support from inet
Own Id: OTP-10056

	The type of the disk log header has been corrected. (Thanks to Niclas Eklund.)
Own Id: OTP-10131

 Kernel 2.15.1

 Fixed Bugs and Malfunctions

	Driver output has been corrected so output of large binaries (> 4 GiB) now
does not silently fail or crash the emulator, but either outputs the binary or
fails the call. This means that writing a binary > 4 Gib to file now works but
on e.g 64-bit Windows (that has scatter/gather I/O buffer segment lengths of
32 bits) fails. The behaviour may change in the future to always write the
binary, in parts if necessary.
Own Id: OTP-9820 Aux Id: OTP-9795

	erts: minor fix for unnecessary condition erts: change SENDFILE_CHUNK_SIZE
from signed to unsigned (Thanks to jovi zhang)
Own Id: OTP-9872

	Two contracts in gen_sctp have been corrected.
Own Id: OTP-9874

	If a process calls a module with an running on_load handler, the process is
supposed to be suspended. But if the module with the on_load handler was
loading used code:load_binary/3, the call would instead fail with an undef
exception.
Own Id: OTP-9875

	File name and error reason is now returned if creation of a cookie fails.
(Thanks to Magnus Henoch)
Own Id: OTP-9954

	Fix port leak in zlib when passing invalid data to
compress,uncompress,zip,unzip,gzip,gunzip.
Own Id: OTP-9981

	Various typographical errors corrected in documentation for the global,
error_logger, etop, lists, ets and supervisor modules and in the c_portdriver
and kernel_app documentation. (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-9987

	Fix returned error from gen_tcp:accept/1,2 when running out of ports.
The {error, enfile} return value is badly misleading and confusing for this
case, since the Posix ENFILE errno value has a well-defined meaning that has
nothing to do with Erlang ports. The fix changes the return value to {error,
system_limit}, which is consistent with e.g. various file(3) functions.
inet:format_error/1 has also been updated to support system_limit in the same
manner as file:format_error/1. (Thanks to Per Hedeland)
Own Id: OTP-9990

	erts_debug:size/1 has been corrected to take sharing in the environment of
funs into account. For funs it used to always give the same result as
erts_debug:flat_size/1.
Own Id: OTP-9991

	In some cases when the process doing file:sendfile crashes while sending the
file the efile_drv code would not clean up after itself correctly. This has
now been fixed.
Own Id: OTP-9993

	On BSD based platforms file:sendfile would sometime go into an infinite loop
when sending big files. This has now been fixed.
Own Id: OTP-9994

	While disk_log eagerly collects logged terms for better performance,
collecting too much data may choke the system and cause huge binaries to be
written.
The problem was addressed in OTP-9764, but the situation was not improved in
all cases.
(Thanks to Richard Carlsson.)
Own Id: OTP-9999 Aux Id: OTP-9764

	The documentation of .app files incorrectly said that the default value for
the mod parameter is undefined. This is now corrected to [].
Own Id: OTP-10002

 Kernel 2.15

 Fixed Bugs and Malfunctions

	Calls to global:whereis_name/1 have been substituted for calls to
global:safe_whereis_name/1 since the latter is not safe at all.
The reason for not doing this earlier is that setting a global lock masked out
a bug concerning the restart of supervised children. The bug has now been
fixed by a modification of global:whereis_name/1. (Thanks to Ulf Wiger for
code contribution.)
A minor race conditions in gen_fsm:start* has been fixed: if one of these
functions returned {error, Reason} or ignore, the name could still be
registered (either locally or in global. (This is the same modification as
was done for gen_server in OTP-7669.)
The undocumented function global:safe_whereis_name/1 has been removed.
Own Id: OTP-9212 Aux Id: seq7117, OTP-4174

	Honor option packet_size for http packet parsing by both TCP socket and
erlang:decode_packet. This gives the ability to accept HTTP headers larger
than the default setting, but also avoid DoS attacks by accepting lines only
up to whatever length you wish to allow. For consistency, packet type line
also honor option packet_size. (Thanks to Steve Vinoski)
Own Id: OTP-9389

	disk_log:reopen/2,3 and disk_log:breopen/3 could return the error reason
from file:rename/2 rather than the reason {file_error, Filename, Reason}.
This bug has been fixed.
The message {disk_log, Node, {error, disk_log_stopped}} which according the
documentation is sent upon failure to truncate or reopen a disk log was
sometimes turned into a reply. This bug has been fixed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9508

	Environment variable 'shutdown_timeout' is added to kernel application.
Earlier, application_controller would hang forever if an application top
supervisor did not terminate upon a shutdown request. If this new environment
variable is set to a positive integer T, then application controller will now
give up after T milliseconds and instead brutally kill the application. For
backwards compatibility, the default value for shutdown_timeout is 'infinity'.
Own Id: OTP-9540

	Add '-callback' attributes in stdlib's behaviours
Replace the behaviour_info(callbacks) export in stdlib's behaviours with
-callback' attributes for all the callbacks. Update the documentation with
information on the callback attribute Automatically generate 'behaviour_info'
function from '-callback' attributes
'behaviour_info(callbacks)' is a special function that is defined in a module
which describes a behaviour and returns a list of its callbacks.
This function is now automatically generated using the '-callback' specs. An
error is returned by lint if user defines both '-callback' attributes and the
behaviour_info/1 function. If no type info is needed for a callback use a
generic spec for it. Add '-callback' attribute to language syntax
Behaviours may define specs for their callbacks using the familiar spec
syntax, replacing the '-spec' keyword with '-callback'. Simple lint checks are
performed to ensure that no callbacks are defined twice and all types referred
are declared.
These attributes can be then used by tools to provide documentation to the
behaviour or find discrepancies in the callback definitions in the callback
module.
Add callback specs into 'application' module in kernel Add callback specs to
tftp module following internet documentation Add callback specs to
inets_service module following possibly deprecated comments
Own Id: OTP-9621

	make tab completion work in remote shells (Thanks to Mats Cronqvist)
Own Id: OTP-9673

	Add missing parenthesis in heart doc.
Add missing spaces in the Reference Manual distributed section.
In the HTML version of the doc those spaces are necessary to separate those
words.
Own Id: OTP-9693

	Fixes net_kernel:get_net_ticktime() doc
Adds missing description when `ignored' is returned. (Thanks to Ricardo
Catalinas Jiménez)
Own Id: OTP-9713

	While disk_log eagerly collects logged terms for better performance,
collecting too much data may choke the system and cause huge binaries to be
written. In order to remedy the situation a (small) limit on the amount of
data that is collected before writing to disk has been introduced.
Own Id: OTP-9764

		Correct callback spec in application module
	Refine warning about callback specs with extra ranges
	Cleanup autoimport compiler directives
	Fix Dialyzer's warnings in typer
	Fix Dialyzer's warning for its own code
	Fix bug in Dialyzer's behaviours analysis
	Fix crash in Dialyzer
	Variable substitution was not generalizing any unknown variables.

Own Id: OTP-9776

	Fix a crash when file:change_time/2,3 are called with invalid dates
Calling file:change_time/2,3 with an invalid date tuple (e.g
file:change_time("file.txt", {undefined, undefined})) will cause
file_server_2 to crash. error_logger will shutdown and the whole VM will stop.
Change behavior to validate given dates on system boundaries. (i.e before
issuing a server call).(Thanks to Ahmed Omar)
Own Id: OTP-9785

 Improvements and New Features

	An option list argument can now be passed to
file:read_file_info/2, file:read_link_info/2 and file:write_file_info/3
and set time type information in the call. Valid options are
{time, local}, {time, universal} and {time, posix}. In the case of posix
time no conversions are made which makes the operation a bit faster.
Own Id: OTP-7687

	file:list_dir/1,2 will now fill an buffer entire with filenames from the
efile driver before sending it to an erlang process. This will speed up this
file operation in most cases.
Own Id: OTP-9023

	gen_sctp:open/0-2 may now return {error,eprotonosupport} if SCTP is not
supported
gen_sctp:peeloff/1 has been implemented and creates a one-to-one socket which
also are supported now
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-9239

	Sendfile has been added to the file module's API. sendfile/2 is used to read
data from a file and send it to a tcp socket using a zero copying mechanism if
available on that OS.
Thanks to Tuncer Ayaz and Steve Vinovski for original implementation
Own Id: OTP-9240

	Tuple funs (a two-element tuple with a module name and a function) are now
officially deprecated and will be removed in R16. Use 'fun M:F/A' instead.
To make you aware that your system uses tuple funs, the very first time a
tuple fun is applied, a warning will be sent to the error logger.
Own Id: OTP-9649

 Kernel 2.14.5

 Fixed Bugs and Malfunctions

	Fix type of Packet arg of gen_tcp:send/2 and gen_udp:send/4
The type is marked as a binary() or a string() but in practice it can be an
iodata(). The test suite was updated to confirm the gen_tcp/2 and
gen_udp:send/4 functions accept iodata() (iolists) packets. (Thanks to Filipe
David Manana)
Own Id: OTP-9514

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Improvements and New Features

	The types and specifications of the inet modules have been improved.
Own Id: OTP-9260

	Types and specifications have been added.
Own Id: OTP-9356

	Contracts in STDLIB and Kernel have been improved and type errors have been
corrected.
Own Id: OTP-9485

	Update documentation and specifications of some of the zlib functions.
Own Id: OTP-9506

 Kernel 2.14.4

 Fixed Bugs and Malfunctions

	The send_timeout option in gen_tcp did not work properly in active mode or
with {active,once} options. This is now corrected.
Own Id: OTP-9145

	Fixed various typos across the documentation (Thanks to Tuncer Ayaz)
Own Id: OTP-9154

	Fix typo in doc of rpc:pmap/3 (Thanks to Ricardo Catalinas Jiménez)
Own Id: OTP-9168

	A bug in inet_res, the specialized DNS resolver, has been corrected. A late
answer with unfortunate timing could cause a runtime exception. Some code
cleanup and improvements also tagged along. Thanks to Evegeniy Khramtsov for a
pinpointing bug report and bug fix testing.
Own Id: OTP-9221 Aux Id: OTP-8712

 Improvements and New Features

	Types and specifications have been added.
Own Id: OTP-9268

	Erlang types and specifications are used for documentation.
Own Id: OTP-9272

	Two opaque types that could cause warnings when running Dialyzer have been
modified.
Own Id: OTP-9337

 Kernel 2.14.3

 Fixed Bugs and Malfunctions

	os:find_executable/{1,2} will no longer return the path of a directory that
happens to be in the PATH.
Own Id: OTP-8983 Aux Id: seq11749

	Fix -spec for file:write_file/3
Change type for second parameter from binary() to iodata(), since the function
explicitly takes steps to accept lists as well as binaries. (thanks to Magnus
Henoch).
Own Id: OTP-9067

	Sanitize the specs of the code module
After the addition of unicode_binary() to the file:filename() type, dialyzer
started complaining about erroneous or incomplete specs in some functions of
the 'code' module. The culprit was hard-coded information in erl_bif_types for
functions of this module, which were not updated. Since these functions have
proper specs these days and code duplication (pun intended) is never a good
idea, their type information was removed from erl_bif_types.
While doing this, some erroneous comments were fixed in the code module and
also made sure that the code now runs without dialyzer warnings even when the
-Wunmatched_returns option is used.
Some cleanups were applied to erl_bif_types too.
Own Id: OTP-9100

	- Add spec for function that does not return - Strengthen spec - Introduce
types to avoid duplication in specs - Add specs for functions that do not
return - Add specs for behaviour callbacks - Simplify two specs
Own Id: OTP-9127

 Kernel 2.14.2

 Improvements and New Features

	The Erlang VM now supports Unicode filenames. The feature is turned on by
default on systems where Unicode filenames are mandatory (Windows and MacOSX),
but can be enabled on other systems with the '+fnu' emulator option. Enabling
the Unicode filename feature on systems where it is not default is however
considered experimental and not to be used for production. Together with the
Unicode file name support, the concept of "raw filenames" is introduced, which
means filenames provided without implicit unicode encoding translation. Raw
filenames are provided as binaries, not lists. For further information, see
stdlib users guide and the chapter about using Unicode in Erlang. Also see the
file module manual page.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8887

	There is now a new function inet:getifaddrs/0 modeled after C library function
getifaddrs() on BSD and LInux that reports existing interfaces and their
addresses on the host. This replaces the undocumented and unsupported
inet:getiflist/0 and inet:ifget/2.
Own Id: OTP-8926

 Kernel 2.14.1.1

 Fixed Bugs and Malfunctions

	In embedded mode, on_load handlers that called code:priv_dir/1 or other
functions in code would hang the system. Since the crypto application now
contains an on_loader handler that calls code:priv_dir/1, including the
crypto application in the boot file would prevent the system from starting.
Also extended the -init_debug option to print information about on_load
handlers being run to facilitate debugging.
Own Id: OTP-8902 Aux Id: seq11703

 Kernel 2.14.1

 Fixed Bugs and Malfunctions

	Fixed: inet:setopts(S, [{linger,{true,2}}]) returned {error,einval} for
SCTP sockets. The inet_drv had a bug when checking the option size.
Own Id: OTP-8726 Aux Id: seq11617

	gen_udp:connect/3 was broken for SCTP enabled builds. It did not detect remote
end errors as it should.
Own Id: OTP-8729

	reference() has been substituted for ref() in the documentation.
Own Id: OTP-8733

	A bug introduced in kernel-2.13.5.3 has been fixed. If running
net_kernel:set_net_ticktime/1 twice within the TransitionPerod the second
call caused the net_kernel process to crash with a badmatch.
Own Id: OTP-8787 Aux Id: seq11657, OTP-8643

	inet:getsockopt for SCTP sctp_default_send_param had a bug to not initialize
required feilds causing random answers. It is now corrected.
Own Id: OTP-8795 Aux Id: seq11655

	For a socket in the HTTP packet mode, the return value from gen_tcp:recv/2,3
if there is an error in the header will be {ok,{http_error,String}} instead
of {error,{http_error,String}} to be consistent with ssl:recv/2,3.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8831

 Improvements and New Features

	Even when configuring erlang with --enable-native-libs, the native code for
modules loaded very early (such as lists) would not get loaded. This has been
corrected. (Thanks to Paul Guyot.)
Own Id: OTP-8750

	The undocumented function inet:ifget/2 has been improved to return interface
hardware address (MAC) on platforms supporting getaddrinfo() (such as BSD
unixes). Note it still does not work on all platforms for example not Windows
nor Solaris, so the function is still undocumented.
Buffer overflow and field init bugs for inet:ifget/2 and inet:getservbyname/2
has also been fixed.
Thanks to Michael Santos.
Own Id: OTP-8816

	As a usability improvement the 'inet6' option to functions gen_tcp:listen/2,
gen_tcp:connect/3-4, gen_udp:open/2 and gen_sctp:open/1-2 is now implicit if
the address argument or the 'ip' option contain an IPv6 address (8-tuple).
Own Id: OTP-8822

 Kernel 2.14

 Fixed Bugs and Malfunctions

	os:find_executable can now be fed with the complete name of the executable on
Windows and still find it. I.e os:find_executable("werl.exe") will work as
os:find_executable("werl").
Own Id: OTP-3626

	The shell's line editing has been improved to more resemble the behaviour of
readline and other shells. (Thanks to Dave Peticolas)
Own Id: OTP-8635

	Under certain circumstances the net kernel could hang. (Thanks to Scott Lystig
Fritchie.)
Own Id: OTP-8643 Aux Id: seq11584

	The kernel DNS resolver was leaking one or two ports if the DNS reply could
not be parsed or if the resolver(s) caused noconnection type errors. Bug now
fixed. A DNS specification borderline truncated reply triggering the port
leakage bug has also been fixed.
Own Id: OTP-8652

 Improvements and New Features

	As of this version, the global name server no longer supports nodes running
Erlang/OTP R11B.
Own Id: OTP-8527

	The file module's functions write,read and read_line now handles named
io_servers like 'standard_io' and 'standard_error' correctly.
Own Id: OTP-8611

	The functions file:advise/4 and file:datasync/1 have been added. (Thanks to
Filipe David Manana.)
Own Id: OTP-8637

	When exchanging groups between nodes pg2 did not remove duplicated members.
This bug was introduced in R13B03 (kernel-2.13.4).
Own Id: OTP-8653

	There is a new option 'exclusive' to file:open/2 that uses the OS O_EXCL flag
where supported to open the file in exclusive mode.
Own Id: OTP-8670

 Kernel 2.13.5.3

 Fixed Bugs and Malfunctions

	A bug introduced in Kernel 2.13.5.2 has been fixed.
Own Id: OTP-8686 Aux Id: OTP-8643

 Kernel 2.13.5.2

 Fixed Bugs and Malfunctions

	Under certain circumstances the net kernel could hang. (Thanks to Scott Lystig
Fritchie.)
Own Id: OTP-8643 Aux Id: seq11584

 Kernel 2.13.5.1

 Fixed Bugs and Malfunctions

	A race condition in os:cmd/1 could cause the caller to get stuck in
os:cmd/1 forever.
Own Id: OTP-8502

 Kernel 2.13.5

 Fixed Bugs and Malfunctions

	A race bug affecting pg2:get_local_members/1 has been fixed. The bug was
introduced in R13B03.
Own Id: OTP-8358

	The loading of native code was not properly atomic in the SMP emulator, which
could cause crashes. Also a per-MFA information table for the native code has
now been protected with a lock since it turns that it could be accessed
concurrently in the SMP emulator. (Thanks to Mikael Pettersson.)
Own Id: OTP-8397

	user.erl (used in oldshell) is updated to handle unicode in prompt strings
(io:get_line/{1,2}). io_lib is also updated to format prompts with the 't'
modifier (i.e. ~ts instead of ~s).
Own Id: OTP-8418 Aux Id: OTP-8393

	The resolver routines failed to look up the own node name as hostname, if the
OS native resolver was erroneously configured, bug reported by Yogish Baliga,
now fixed.
The resolver routines now tries to parse the hostname as an IP string as most
OS resolvers do, unless the native resolver is used.
The DNS resolver inet_res and file resolver inet_hosts now do not read OS
configuration files until they are needed. Since the native resolver is
default, in most cases they are never needed.
The DNS resolver's automatic updating of OS configuration file data
(/etc/resolv.conf) now uses the 'domain' keyword as default search domain if
there is no 'search' keyword.
Own Id: OTP-8426 Aux Id: OTP-8381

 Improvements and New Features

	The expected return value for an on_load function has been changed. (See the
section about code loading in the Reference manual.)
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-8339

	Explicit top directories in archive files are now optional.
For example, if an archive (app-vsn.ez) just contains an app-vsn/ebin/mod.beam
file, the file info for the app-vsn and app-vsn/ebin directories are faked
using the file info from the archive file as origin. The virtual directories
can also be listed. For short, the top directories are virtual if they does
not exist.
Own Id: OTP-8387

	code:clash/0 now looks inside archives (.ez files). (Thanks to Tuncer Ayaz.)
Own Id: OTP-8413

	There are new gen_sctp:connect_init/* functions that initiate an SCTP
connection without blocking for the result. The result is delivered
asynchronously as an sctp_assoc_change event. (Thanks to Simon Cornish.)
Own Id: OTP-8414

 Kernel 2.13.4

 Fixed Bugs and Malfunctions

	A link in m:pg2 has been fixed. (Thanks to Christophe Romain.)
Own Id: OTP-8198

	A ticker process could potentially be blocked indefinitely trying to send a
tick to a node not responding. If this happened, the connection would not be
brought down as it should.
Own Id: OTP-8218

	A bug in pg2 when members who died did not leave process groups has been
fixed. (Thanks to Matthew Dempsky.)
Own Id: OTP-8259

 Improvements and New Features

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8201

	The top directory in archive files does not need to have a -vsn suffix
anymore. For example if the archive file has the name like mnesia-4.4.7.ez
the top directory in the archive can either be named mnesia or
mnesia-4.4.7. If the archive file has a name like mnesia.ez the top
directory in the archive must be named mnesia as earlier.
Own Id: OTP-8266

	The -on_load() directive can be used to run a function when a module is
loaded. It is documented in the section about code loading in the Reference
Manual.
Own Id: OTP-8295

 Kernel 2.13.3

 Improvements and New Features

	The DNS resolver client inet_res has been rewritten, documented and released.
See inet_res(3) and Erts User's Guide: Inet configuration.
It can formally not be incompatible with respect to earlier versions since
there was no earlier official version. However it was used before and some
details have changed.
Configuration now initializes from /etc/resolv.conf and /etc/hosts on all unix
platforms regardless of which distribution mode the node is started in. The
directory (/etc) these files are supposed to reside in can be changed via an
environment variable. These configuration file locations can also be changed
in the inet configuration. The files are monitored for change and re-read,
which makes a few resolver configuration variables out of application control.
The /etc/hosts entries have now their own cache table that is shadowed (with
lookup method 'file' is used) by the application configured host entries. This
problem (that inet_res configuration only worked for distribution mode long
names) was among other reported by Matthew O'Gorman many moons ago.
The lookup methods are still 'native' only per default. Resolver configuration
is done on all Unix platforms just to get a usable configuration for direct
calls to inet_res.
The functions inet_res:nslookup/3..5 and inet_res:nnslookup/4..4 are no
longer recommended to use, instead use inet_res:lookup/3..5 and
inet_res:resolve/3..5 which provide clearer argument types and the
possibility to override options in the call.
Users of previous unsupported versions of inet_res have included internal
header files to get to the internal record definitions in order to examine DNS
replies. This is still unsupported and there are access functions in inet_dns
to use instead. These are documented in inet_res(3).
Bug fix: a compression reference loop would make DNS message decoding loop
forever. Problem reported by Florian Weimer.
Bug fix and patch suggestion by Sergei Golovan: configuring IPv6 nameservers
did not work. His patch (as he warned) created many UDP sockets; one per
nameserver. This has been fixed in the released version.
Improvement: inet_res is now EDNS0 capable. The current implementation is
simple and does not probe and cache EDNS info for nameservers, which a fully
capable implementation probably should do. EDNS has to be enabled via resolver
configuration, and if a nameserver replies that it does not support EDNS,
inet_res falls back to a regular DNS query.
Improvement: now inet_res automatically falls back to TCP if it gets a
truncated answer from a nameserver.
Warning: some of the ancient and exotic record types handled by inet_res and
inet_dns are not supported by current versions of BIND, so they could not be
tested after the rewrite, with reasonable effort, e.g MD, MF, NULL, and SPF.
The risk for bugs in these particular records is still low since their code is
mostly shared with other tested record types.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7955 Aux Id: OTP-7107 OTP-6852

	A TCP socket with option {packet,4} could crash the emulator if it received
a packet header with a very large size value (>2Gb). The same bug caused
erlang:decode_packet/3 to return faulty values. (Thanks to Georgos Seganos.)
Own Id: OTP-8102

	The file module has now a read_line/1 function similar to the io:get_line/2,
but with byte oriented semantics. The function file:read_line/1 works for raw
files as well, but for good performance it is recommended to use it together
with the 'read_ahead' option for raw file access.
Own Id: OTP-8108

 Kernel 2.13.2

 Fixed Bugs and Malfunctions

	A bug when doing io:get_line (among other calls) from a file opened with
encoding other than latin1, causing false unicode errors to occur, is now
corrected.
Own Id: OTP-7974

 Improvements and New Features

	Added functionality to get higher resolution timestamp from system. The
erlang:now function returns a timestamp that's not always consistent with the
actual operating system time (due to resilience against large time changes in
the operating system). The function os:timestamp/0 is added to get a similar
timestamp as the one being returned by erlang:now, but untouched by Erlangs
time correcting and smoothing algorithms. The timestamp returned by
os:timestamp is always consistent with the operating systems view of time,
like the calendar functions for getting wall clock time, but with higher
resolution. Example of usage can be found in the os manual page.
Own Id: OTP-7971

 Kernel 2.13.1

 Fixed Bugs and Malfunctions

	Many concurrent calls to os:cmd/1 will only block one scheduler thread at a
time, making an smp emulator more responsive if the OS is slow forking
processes.
Own Id: OTP-7890 Aux Id: seq11219

	Fixed hanging early RPC that did IO operation during node start.
Own Id: OTP-7903 Aux Id: seq11224

	The error behavior of gen_tcp and gen_udp has been corrected.
gen_tcp:connect/3,4 and gen_udp:send/4 now returns {error,eafnosupport} for
conflicting destination address versus socket address family. Other corner
cases for IP address string host names combined with not using the native (OS)
resolver (which is not default) has also been changed to return
{error,nxdomain} instead of {error,einval}. Those changes just may
surprise old existing code. gen_tcp:listen/2 and gen_udp:open/2 now fails for
conflicting local address versus socket address family instead of trying to
use an erroneous address. Problem reported by Per Hedeland.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7929

 Improvements and New Features

	Several glitches and performance issues in the Unicode and I/O-system
implementation of R13A have been corrected.
Own Id: OTP-7896 Aux Id: OTP-7648 OTP-7887

	The unsupported DNS resolver client inet_res has now been improved to handle
NAPTR queries.
Own Id: OTP-7925 Aux Id: seq11231

 Kernel 2.13

 Fixed Bugs and Malfunctions

	The old Erlang DNS resolver inet_res has been corrected to handle TXT records
with more than one character string. Patch courtesy of Geoff Cant.
Own Id: OTP-7588

	When chunk reading a disk log opened in read_only mode, bad terms could crash
the disk log process.
Own Id: OTP-7641 Aux Id: seq11090

	gen_tcp:send() did sometimes (only observed on Solaris) return
{error,enotconn} instead of the expected {error,closed} as the peer socket
had been explicitly closed.
Own Id: OTP-7647

	The gen_sctp option sctp_peer_addr_params,
#sctp_paddrparams{address={IP,Port} was erroneously decoded in the inet
driver. This bug has now been corrected.
Own Id: OTP-7755

 Improvements and New Features

	Erlang programs can now access STDERR on platforms where such a file
descriptor is available by using the io_server 'standard_error', i.e.
io:format(standard_error,"~s~n",[ErrorMessage]),
Own Id: OTP-6688

	The format of the string returned by erlang:system_info(system_version) (as
well as the first message when Erlang is started) has changed. The string now
contains the both the OTP version number as well as the erts version number.
Own Id: OTP-7649

	As of this version, the global name server no longer supports nodes running
Erlang/OTP R10B.
Own Id: OTP-7661

	A {nodedown, Node} message passed by the net_kernel:monitor_nodes/X
functionality is now guaranteed to be sent after Node has been removed from
the result returned by erlang:nodes/Y.
Own Id: OTP-7725

	The deprecated functions erlang:fault/1, erlang:fault/2, and
file:rawopen/2 have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7812

	Nodes belonging to different independent clusters can now co-exist on the same
host with the help of a new environment variable setting ERL_EPMD_PORT.
Own Id: OTP-7826

	The copyright notices have been updated.
Own Id: OTP-7851

 Kernel 2.12.5.1

 Fixed Bugs and Malfunctions

	When chunk reading a disk log opened in read_only mode, bad terms could crash
the disk log process.
Own Id: OTP-7641 Aux Id: seq11090

	Calling gen_tcp:send() from several processes on socket with option
send_timeout could lead to much longer timeout than specified. The solution
is a new socket option {send_timeout_close,true} that will do automatic
close on timeout. Subsequent calls to send will then immediately fail due to
the closed connection.
Own Id: OTP-7731 Aux Id: seq11161

 Kernel 2.12.5

 Fixed Bugs and Malfunctions

	The documentation of rpc:pmap/3 has been corrected. (Thanks to Kirill
Zaborski.)
Own Id: OTP-7537

	The listen socket used for the distributed Erlang protocol now uses the socket
option 'reuseaddr', which is useful when you force the listen port number
using kernel options 'inet_dist_listen_min' and 'inet_dist_listen_max' and
restarts a node with open connections.
Own Id: OTP-7563

	Fixed memory leak of unclosed TCP-ports. A gen_tcp:send() followed by a
failing gen_tcp:recv() could in some cases cause the port to linger after
being closed.
Own Id: OTP-7615

 Improvements and New Features

	Processes spawned using proc_lib (including gen_server and other library
modules that use proc_lib) no longer keep the entire argument list for the
initial call, but only the arity.
Also, if proc_lib:spawn/1 is used to spawn a fun, the actual fun is not
kept, but only module, function name, and arity of the function that
implements the fun.
The reason for the change is that keeping the initial fun (or a fun in an
argument list), would prevent upgrading the code for the module. A secondary
reason is that keeping the fun and function arguments could waste a
significant amount of memory.
The drawback with the change is that the crash reports will provide less
precise information about the initial call (only Module:Function/Arity
instead of Module:Function(Arguments)). The function
proc_lib:initial_call/1 still returns a list, but each argument has been
replaced with a dummy atom.
Own Id: OTP-7531 Aux Id: seq11036

	io:get_line/1 when reading from standard input is now substantially faster.
There are also some minor performance improvements in io:get_line/1 when
reading from any file opened in binary mode. (Thanks to Fredrik Svahn.)
Own Id: OTP-7542

	There is now experimental support for loading of code from archive files. See
the documentation of code, init, erl_prim_loaderand escript for more
info.
The error handling of escripts has been improved.
An escript may now set explicit arguments to the emulator, such as
-smp enabled.
An escript may now contain a precompiled beam file.
An escript may now contain an archive file containing one or more
applications (experimental).
The internal module code_aux has been removed.
Own Id: OTP-7548 Aux Id: otp-6622

	code:is_sticky/1 is now documented. (Thanks to Vlad Dumitrescu.)
Own Id: OTP-7561

	In the job control mode, the "s" and "r" commands now take an optional
argument to specify which shell to start. (Thanks to Robert Virding.)
Own Id: OTP-7617

	net_adm:world/0,1 could crash if called in an emulator that has not been
started with either the -sname or -name option; now it will return an
empty list. (Thanks to Edwin Fine.)
Own Id: OTP-7618

 Kernel 2.12.4

 Fixed Bugs and Malfunctions

	Large files are now handled on Windows, where the filesystem supports it.
Own Id: OTP-7410

 Improvements and New Features

	New BIF erlang:decode_packet/3 that extracts a protocol packet from a
binary. Similar to the socket option {packet, Type}. Also documented the
socket packet type http and made it official. NOTE: The tuple format for
http packets sent from an active socket has been changed in an incompatible
way.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7404

	Setting the {active,once} for a socket (using inets:setopts/2) is now
specially optimized (because the {active,once} option is typically used much
more frequently than other options).
Own Id: OTP-7520

 Kernel 2.12.3

 Fixed Bugs and Malfunctions

	SCTP_ADDR_CONFIRMED events are now handled by gen_sctp.
Own Id: OTP-7276

	When leaving a process group with pg2:leave/2 the process was falsely
assumed to be a member of the group. This bug has been fixed.
Own Id: OTP-7277

	In the Erlang shell, using up and down arrow keys, the wrong previous command
could sometimes be retrieved.
Own Id: OTP-7278

	The documentation for erlang:trace/3 has been corrected.
Own Id: OTP-7279 Aux Id: seq10927

	In the SMP emulator, there was small risk that code:purge(Mod) would kill a
process that was running code in Mod and unload the module Mod before the
process had terminated. code:purge(Mod) now waits for confirmation (using
erlang:monitor/2) that the process has been killed before proceeding.
Own Id: OTP-7282

	zlib:inflate failed when the size of the inflated data was an exact multiple
of the internal buffer size (4000 bytes by default).
Own Id: OTP-7359

 Improvements and New Features

	Additional library directories can now be specified in the environment
variable ERL_LIBS. See the manual page for the code module. (Thanks to Serge
Aleynikov.)
Own Id: OTP-6940

	crypto and zlib drivers improved to allow concurrent smp access.
Own Id: OTP-7262

	There is a new function init:stop/1 which can be used to shutdown the system
cleanly AND generate a non-zero exit status or crash dump. (Thanks to Magnus
Froberg.)
Own Id: OTP-7308

	The hide option for open_port/2 is now documented.
(Thanks to Richard Carlsson.)
Own Id: OTP-7358

 Kernel 2.12.2.1

 Improvements and New Features

	os:cmd/1 on unix platforms now use /bin/sh as shell instead of looking for
sh in the PATH environment.
Own Id: OTP-7283

 Kernel 2.12.2

 Fixed Bugs and Malfunctions

	A bug caused by a race condition involving disk_log and pg2 has been
fixed.
Own Id: OTP-7209 Aux Id: seq10890

	The beta testing module gen_sctp now supports active mode as stated in the
documentation. Active mode is still rather untested, and there are some issues
about what should be the right semantics for gen_sctp:connect/5. In
particular: should it be blocking or non-blocking or choosable. There is a
high probability it will change semantics in a (near) future patch.
Try it, give comments and send in bug reports!
Own Id: OTP-7225

 Improvements and New Features

	erlang:system_info/1 now accepts the logical_processors, and
debug_compiled arguments. For more info see the, erlang documentation.
The scale factor returned by test_server:timetrap_scale_factor/0 is now also
effected if the emulator uses a larger amount of scheduler threads than the
amount of logical processors on the system.
Own Id: OTP-7175

	Updated the documentation for erlang:function_exported/3 and io:format/2
functions to no longer state that those functions are kept mainly for
backwards compatibility.
Own Id: OTP-7186

	A process executing the processes/0 BIF can now be preempted by other
processes during its execution. This in order to disturb the rest of the
system as little as possible. The returned result is, of course, still a
consistent snapshot of existing processes at a time during the call to
processes/0.
The documentation of the processes/0 BIF and the
is_process_alive/1 BIF have been updated in order to
clarify the difference between an existing process and a process that is
alive.
Own Id: OTP-7213

	tuple_size/1 and byte_size/1 have been
substituted for size/1 in the documentation.
Own Id: OTP-7244

 Kernel 2.12.1.2

 Improvements and New Features

	The {allocator_sizes, Alloc} and alloc_util_allocators arguments are now
accepted by erlang:system_info/1. For more information see the erlang
documentation.
Own Id: OTP-7167

 Kernel 2.12.1.1

 Fixed Bugs and Malfunctions

	Fixed a problem in group that could cause the ssh server to lose answers or
hang.
Own Id: OTP-7185 Aux Id: seq10871

 Kernel 2.12.1

 Fixed Bugs and Malfunctions

	file:read/2 and file:consult_stream/1,3 did not use an empty prompt on I/O
devices. This bug has now been corrected.
Own Id: OTP-7013

	The sctp driver has been updated to work against newer lksctp packages e.g
1.0.7 that uses the API spelling change adaption -> adaptation. Older lksctp
(1.0.6) still work. The erlang API in gen_sctp.erl and inet_sctp.hrl now
spells 'adaptation' regardless of the underlying C API.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-7120

 Improvements and New Features

	The documentation has been updated so as to reflect the last updates of the
Erlang shell as well as the minor modifications of the control sequence p of
the io_lib module.
Superfluous empty lines have been removed from code examples and from Erlang
shell examples.
Own Id: OTP-6944 Aux Id: OTP-6554, OTP-6911

	tuple_size/1 and byte_size/1 have been
substituted for size/1.
Own Id: OTP-7009

 Kernel 2.12

 Fixed Bugs and Malfunctions

	A bug for raw files when reading 0 bytes returning 'eof' instead of empty data
has been corrected.
Own Id: OTP-6291 Aux Id: OTP-6967

	A bug in gen_udp:fdopen reported by David Baird and also found by Dialyzer has
been fixed.
Own Id: OTP-6836 Aux Id: OTP-6594

	Calling error_logger:tty(true) multiple times does not give multiple error
log printouts.
Own Id: OTP-6884 Aux Id: seq10767

	The global name server now ignores nodeup messages when the command line
flag -connect_all false has been used. (Thanks to Trevor Woollacott.)
Own Id: OTP-6931

	file:write_file/3, file:write/2 and file:read/2 could crash (contrary to
documentation) for odd enough file system problems, e.g write to full file
system. This bug has now been corrected.
In this process the file module has been rewritten to produce better error
codes. Posix error codes now originate from the OS file system calls or are
generated only for very similar causes (for example 'enomem' is generated if a
memory allocation fails, and 'einval' is generated if the file handle in
Erlang is a file handle but currently invalid).
More Erlang-ish error codes are now generated. For example {error,badarg} is
now returned from file:close/1 if the argument is not of a file handle type.
See file(3).
The possibility to write a single byte using file:write/2 instead of a list
or binary of one byte, contradictory to the documentation, has been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6967 Aux Id: OTP-6597 OTP-6291

	Monitor messages produced by the system monitor functionality, and garbage
collect trace messages could contain erroneous heap and/or stack sizes when
the actual heaps and/or stacks were huge.
As of erts version 5.6 the large_heap option to
erlang:system_monitor/[1,2] has been modified. The monitor message is sent
if the sum of the sizes of all memory blocks allocated for all heap
generations is equal to or larger than the specified size. Previously the
monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than the specified size.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6974 Aux Id: seq10796

	inet:getopts/2 returned random values on Windows Vista.
Own Id: OTP-7003

 Improvements and New Features

	Minor documentation corrections for file:pread/2 and file:pread/3.
Own Id: OTP-6853

	The deprecated functions file:file_info/1, init:get_flag/1,
init:get_flags/0, and init:get_args/0 have been removed.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6886

	Contract directives for modules in Kernel and STDLIB.
Own Id: OTP-6895

	The functions io:columns/0, io:columns/1, io:rows/0 and io:rows/1 are added to
allow the user to get information about the terminal geometry. The shell takes
some advantage of this when formatting output. For regular files and other
io-devices where height and width are not applicable, the functions return
{error,enotsup}.
Potential incompatibility: If one has written a custom io-handler, the handler
has to either return an error or take care of io-requests regarding terminal
height and width. Usually that is no problem as io-handlers, as a rule of
thumb, should give an error reply when receiving unknown io-requests, instead
of crashing.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6933

	The undocumented and unsupported functions inet:ip_to_bytes/1,
inet:ip4_to_bytes/1, inet:ip6_to_bytes/1, and inet:bytes_to_ip6/16 have
been removed.
Own Id: OTP-6938

	Added new checksum combine functions to zlib. And fixed a bug in
zlib:deflate. Thanks Matthew Dempsky.
Own Id: OTP-6970

	The spawn_monitor/1 and
spawn_monitor/3 BIFs are now auto-imported (i.e. they
no longer need an erlang: prefix).
Own Id: OTP-6975

	All functions in the code module now fail with an exception if they are
called with obviously bad arguments, such as a tuple when an atom was
expected. Some functions now also fail for undocumented argument types (for
instance, ensure_loaded/1 now only accepts an atom as documented; it used to
accept a string too).
Dialyzer will generally emit warnings for any calls that use undocumented
argument types. Even if the call happens to still work in R12B, you should
correct your code. A future release will adhere to the documentation.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6983

 Kernel 2.11.5.2

 Fixed Bugs and Malfunctions

	The kernel parameter dist_auto_connect once could fail to block a node if
massive parallel sends were issued during a transient failure of network
communication
Own Id: OTP-6893 Aux Id: seq10753

 Kernel 2.11.5.1

 Fixed Bugs and Malfunctions

	The internal (rarely used) DNS resolver has been modified to not use the
domain search list when asked to resolve an absolute name; a name with a
terminating dot. There was also a bug causing it to create malformed DNS
queries for absolute names that has been corrected, correction suggested by
Scott Lystig Fritchie. The code has also been corrected to look up cached RRs
in the same search order as non-cached, now allows having the root domain
among the search domains, and can now actually do a zone transfer request.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6806 Aux Id: seq10714 EABln35459

	zlib:close/1 would leave an EXIT message in the message queue if the calling
process had the trap_exit flag enabled.
Own Id: OTP-6811

 Improvements and New Features

	The documentation of process_flag(priority, Level) has
been updated, see the erlang documentation.
Own Id: OTP-6745 Aux Id: OTP-6715

 Kernel 2.11.5

 Fixed Bugs and Malfunctions

	The shell has been updated to fix the following flaws: Shell process exit left
you with an unresponsive initial shell if not using oldshell. Starting a
restricted shell with a nonexisting callback module resulted in a shell where
no commands could be used, not even init:stop/0. Fun's could not be used as
parameters to local shell functions (in shell_default or user_default) when
restricted_shell was active.
Own Id: OTP-6537

	The undocumented feature gen_tcp:fdopen/2 was broken in R11B-4. It is now
fixed again.
Own Id: OTP-6615

	Corrected cancellation of timers in three places in the inet_res module.
(Problem found by Dialyzer.)
Own Id: OTP-6676

 Improvements and New Features

	Corrected protocol layer flue for socket options SO_LINGER, SO_SNDBUF and
SO_RCVBUF, for SCTP.
Own Id: OTP-6625 Aux Id: OTP-6336

	The behaviour of the inet option {active,once} on peer close is improved and
documented.
Own Id: OTP-6681

	The inet option send_timeout for connection oriented sockets is added to allow
for timeouts in communicating send requests to the underlying TCP stack.
Own Id: OTP-6684 Aux Id: seq10637 OTP-6681

	Minor Makefile changes.
Own Id: OTP-6689 Aux Id: OTP-6742

	The documentation of process_flag(priority, Level) has
been updated, see the erlang documentation.
Own Id: OTP-6715

 Kernel 2.11.4.2

 Improvements and New Features

	process_flag/2 accepts the new flag sensitive.
Own Id: OTP-6592 Aux Id: seq10555

 Kernel 2.11.4.1

 Fixed Bugs and Malfunctions

	A bug in gen_udp:open that broke the 'fd' option has been fixed.
Own Id: OTP-6594 Aux Id: seq10619

 Kernel 2.11.4

 Fixed Bugs and Malfunctions

	Added a warning to the documentation for the error_logger functions
error_msg/1,2, warning_msg/1,2 and info_msg/1,2 that calling these
function with bad arguments can crash the standard event handler.
Own Id: OTP-4575 Aux Id: seq7693

	A bug in inet_db concerning getting the resolver option retry has been
corrected.
Own Id: OTP-6380 Aux Id: seq10534

	Names registered by calling global:register_name() or
global:re_register_name() were not always unregistered when the registering
or registered process died. This bug has been fixed.
Own Id: OTP-6428

	When setting the kernel configuration parameter error_logger to false, the
documentation stated that "No error logger handler is installed". This is
true, but error logging is not turned off, as the initial, primitive error
logger event handler is kept, printing raw event messages to tty.
Changing this behavior can be viewed as a backward incompatible change.
Instead a new value silent for the configuration parameter has been added,
which ensures that error logging is completely turned off.
Own Id: OTP-6445

	Clarified the documentation for code:lib_dir/1 and code:priv_dir/1. The
functions traverse the names of the code path, they do not search the actual
directories.
Own Id: OTP-6466

	io:setopts returned {error,badarg}, when called with only an expand_fun
argument. (Thanks to igwan.)
Own Id: OTP-6508

 Improvements and New Features

	An interface towards the SCTP Socket API Extensions has been implemented.It is
an Open Source patch courtesy of Serge Aleynikov and Leonid Timochouk. The
Erlang code parts has been adapted by the OTP team, changing the Erlang API
somewhat.
The Erlang interface consists of the module gen_sctp and an include file
-include_lib("kernel/include/inet_sctp.hrl"). for option record definitions.
The gen_sctp module is documented.
The delivered Open Source patch, before the OTP team rewrites, was written
according to
http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13
and was claimed to work fine, tested on Linux Fedora Core 5.0 (kernel
2.6.15-2054 or later) and on Solaris 10 and 11. The OTP team rewrites used the
same standard document but might have accidentally broken some functionality.
If so, it will soon be patched to working state. The tricky parts in C and the
general design has essentially not changed. During the rewrites the code was
hand tested on SuSE Linux Enterprise Server 10, and briefly on Solaris 10.
Feedbach on code and docs is very much appreciated.
The SCTP interface is in beta state. It has only been hand tested and has no
automatic test suites in OTP meaning everything is most certainly not tested.
Socket active mode is broken. IPv6 is not tested. The documentation has been
reworked due to the API changes, but has not been proofread after this.
Thank you from the OTP team to Serge Aleynikov and Leonid Timochouk for a
valuable contribution. We hope we have not messed it up too much.
Own Id: OTP-6336

	A {minor_version,Version} option is now recognized by
term_to_binary/2. {minor_version,1} will cause
floats to be encoded in an exact and more space-efficient way compared to the
previous encoding.
Own Id: OTP-6434

	Monitoring of nodes has been improved. Now the following properties apply to
net_kernel:monitor_nodes/[1,2]:
	nodeup messages will be delivered before delivery of any message from the
remote node passed through the newly established connection.
	nodedown messages will not be delivered until all messages from the remote
node that have been passed through the connection have been delivered.
	Subscriptions can also be made before the net_kernel server has been
started.

Own Id: OTP-6481

	Setting and getting socket options in a "raw" fashion is now allowed. Using
this feature will inevitably produce non portable code, but will allow setting
ang getting arbitrary uncommon options on TCP stacks that do have them.
Own Id: OTP-6519

	Dialyzer warnings have been eliminated.
Own Id: OTP-6523

	The documentation for file:delete/1 and file:set_cwd/1 has been updated to
clarify what happens if the input arguments are of an incorrect type.
Own Id: OTP-6535

 Kernel 2.11.3.1

 Fixed Bugs and Malfunctions

	An erroneous packet size could be used for the first messages passed through a
newly established connection between two Erlang nodes. This could cause
messages to be discarded, or termination of the connection.
Own Id: OTP-6473

 Kernel 2.11.3

 Fixed Bugs and Malfunctions

	On Unix, the unix:cmd/1 function could leave an 'EXIT' message in the
message queue for the calling process That problem was more likely to happen
in an SMP emulator.
Own Id: OTP-6368

 Improvements and New Features

	More interfaces are added in erl_ddll, to support different usage scenarios.
Own Id: OTP-6307 Aux Id: OTP-6234

	Locks set by calling global:set_lock() were not always deleted when the
locking process died. This bug has been fixed.
Own Id: OTP-6341 Aux Id: seq10445

 Kernel 2.11.2

 Fixed Bugs and Malfunctions

	Behavior in case of disappeared nodes when using he dist_auto_connect once got
changed in R11B-1. The timeouts regarding normal distributed operations is now
reverted to the old (pre R11B-1).
Own Id: OTP-6258 Aux Id: OTP-6200, seq10449

	Start-up problems for the internal process used by the inet:gethostbyname()
functions were eliminated. If the internal process (inet_gethost_native) had
not previously been started, and if several processes at the same time called
one of the inet:gethostbyname() functions, the calls could fail.
Own Id: OTP-6286

 Improvements and New Features

	Code cleanup: the old internal obsolete file_server has been removed. It was
only used when communicating with R7 and older nodes.
Own Id: OTP-6245

	Trying to open a non-existent or badly formed disk log no longer results in a
crash report. In particular, ets:file2tab/1 reports no error when the
argument is not a well-formed disk log file. (The return value has not been
changed, it is still an error tuple.)
Own Id: OTP-6278 Aux Id: seq10421

	There are new BIFs erlang:spawn_monitor/1,3, and the new option monitor
for spawn_opt/2,3,4,5.
The observer_backend module has been updated to handle the new BIFs.
Own Id: OTP-6281

	To help Dialyzer find more bugs, many functions in the Kernel and STDLIB
applications now only accept arguments of the type that is documented.
For instance, the functions lists:prefix/2 and lists:suffix/2 are
documented to only accept lists as their arguments, but they actually accepted
anything and returned false. That has been changed so that the functions
cause an exception if one or both arguments are not lists.
Also, the string:strip/3 function is documented to take a character argument
that is a character to strip from one or both ends of the string. Given a list
instead of a character, it used to do nothing, but will now cause an
exception.
Dialyzer will find most cases where those functions are passed arguments of
the wrong type.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-6295

 Kernel 2.11.1.1

 Improvements and New Features

	There is now an option read_packets for UDP sockets that sets the maximum
number of UDP packets that will be read for each invocation of the socket
driver.
Own Id: OTP-6249 Aux Id: seq10452

 Kernel 2.11.1

 Fixed Bugs and Malfunctions

	In R11B-0, the erl_ddll server process is always started. Despite that, the
configuration parameter start_ddll for the Kernel application was still
obeyed, which would cause the erl_ddll server to be started TWICE (and the
system shutting down as a result). In this release, start_ddll is no longer
used and its documentation has been removed.
Own Id: OTP-6163

	The kernel option {dist_auto_connect,once} could block out nodes that had
never been connected, causing persistent partitioning of networks.
Furthermore, partial restarts of networks could cause inconsistent global name
databases. Both problems are now solved.
Own Id: OTP-6200 Aux Id: seq10377

 Improvements and New Features

	Late arriving tcp_closed and udp_closed messages are now removed from the
message queue of a process calling gen_tcp:close/1, gen_udp:close/1, and
inet:close/1.
Own Id: OTP-6197

 Kernel 2.11

 Fixed Bugs and Malfunctions

	When repairing a disk log with a corrupt index file (caused by for instance a
hard disk failure) the old contents of the index file is kept unmodified. This
will make repeated attempts to open the disk log fail every time.
Own Id: OTP-5558 Aux Id: seq9823

	Previously unlink/1 and erlang:demonitor/2 behaved
completely asynchronous. This had one undesirable effect, though. You could
never know when you were guaranteed not to be affected by a link that you
had unlinked or a monitor that you had demonitored.
The new behavior of unlink/1 and erlang:demonitor/2 can be
viewed as two operations performed atomically. Asynchronously send an unlink
signal or a demonitor signal, and ignore any future results of the link or
monitor.
NOTE: This change can cause some obscure code to fail which previously did
not. For example, the following code might hang:
 Mon = erlang:monitor(process, Pid),
 %% ...
 exit(Pid, bang),
 erlang:demonitor(Mon),
 receive
 {'DOWN', Mon, process, Pid, _} -> ok
 %% We were previously guaranteed to get a down message
 %% (since we exited the process ourself), so we could
 %% in this case leave out:
 %% after 0 -> ok
 end,
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5772

	The behavior when an application fails to start and possibly causes the
runtime system to halt has been cleaned up, including fixing some minor bugs.
application_controller should now always terminate with a non-nested string,
meaning the slogan in an erl_crash.dump should always be easy to read.
init now makes sure that the slogan passed to erlang:halt/1 does not
exceed the maximum allowed length.
Redundant calls to list_to_atom/1 has been removed from
the primitive error_logger event handler. (Thanks Serge Aleynikov for
pointing this out).
The changes only affects the contents of the error messages and crashdump file
slogan.
Own Id: OTP-5964

	The erl_ddll server is now started when OTP is started and placed under the
Kernel supervisor. This fixes several minor issues. It used to be started on
demand.
The documentation for the start and stop functions in the erl_ddll
module has been removed, as those functions are not meant to be used by other
applications.
Furthermore, the erl_ddll:stop/1 function no longer terminates the
erl_ddll server, as that would terminate the entire runtime system.
Own Id: OTP-6033

 Improvements and New Features

	Removed some unused functions from application_master.
Own Id: OTP-3889

	Global no longer allows the registration of a process under more than one
name. If the old (buggy) behavior is desired the Kernel application variable
global_multi_name_action can be given the value allow.
Own Id: OTP-5640 Aux Id: OTP-5603

	The (slightly misleading) warnings that was shown when the erlang.erl file
was compiled has been eliminated.
Own Id: OTP-5947

	The auth module API is deprecated.
Own Id: OTP-6037

	Added erlang:demonitor/2, making it possible to at the same time flush a
received 'DOWN' message, if there is one. See erlang.
Own Id: OTP-6100 Aux Id: OTP-5772

 Kernel 2.10.13

 Fixed Bugs and Malfunctions

	Large files (more than 2 GBytes) are now handled on Solaris 8.
Own Id: OTP-5849 Aux Id: seq10157

	During startup, a garbage {'DOWN', ...} message was left by
inet_gethost_native, that caused problems for the starting code server.
Own Id: OTP-5978 Aux Id: OTP-5974

 Improvements and New Features

	global now makes several attempts to connect nodes when maintaining the
fully connected network. More than one attempt is sometimes needed under very
heavy load.
Own Id: OTP-5889

	erl_epmd now explicitly sets the timeout to infinity when calling
gen_server:call. The old timeout of 15 seconds could time out under very
heavy load.
Own Id: OTP-5959

	Corrected the start of code server to use reference-tagged tuples to ensure
that an unexpected message sent to the parent process does not cause a halt of
the system. Also removed the useless start/* functions in both code.erl
and code_server.erl and no longer exports the init function from
code_server.erl.
Own Id: OTP-5974 Aux Id: seq10243, OTP-5978

 Kernel 2.10.12

 Fixed Bugs and Malfunctions

	A bug in global has been fixed: the locker process added nonode@nohost to
the list of nodes to lock. This could happen before any nodes got known to the
global name server. Depending on net configuration the symptom was a delay.
Own Id: OTP-5792 Aux Id: OTP-5563

	If an .app file is missing, the error reason returned by
application:load/1 has been corrected to
{"no such file or directory", "FILE.app"}, instead of the less informative
{"unknown POSIX error","FILE.app"}.
Own Id: OTP-5809

	Bug fixes: disk_log:accessible_logs/0 no longer reports all pg2 process
groups as distributed disk logs; disk_log:pid2name/1 did not recognize
processes of distributed disk logs.
Own Id: OTP-5810

	The functions file:consult/1, file:path_consult/2, file:eval/1,2,
file:path_eval/2,3, file:script/1,2, file:path_script/2,3 now return
correct line numbers in error tuples.
Own Id: OTP-5814

	If there were user-defined variables in the boot script, and their values were
not provided using the -boot_var option, the emulator would refuse to start
with a confusing error message. Corrected to show a clear, understandable
message.
The prim_file module was modified to not depend on the lists module, to
make it possible to start the emulator using a user-defined loader. (Thanks to
Martin Bjorklund.)
Own Id: OTP-5828 Aux Id: seq10151

	Minor corrections in the description of open modes. (Thanks to Richard
Carlsson.)
Own Id: OTP-5856

 Improvements and New Features

	application_controller now terminates with the actual error reason, instead
of shutdown. This means that the crash dump now should be somewhat more
informative, in the case where the runtime system is terminated due to an
error in an application.
Example: If the (permanent) application app1 fails to start, the slogan now
will be:
"Kernel pid terminated (application_controller) ({application_start_failure,app1,{shutdown, {app1,start,[normal,[]]}}})"
rather than the previous
"Kernel pid terminated (application_controller) (shutdown)".
Own Id: OTP-5811

 Kernel 2.10.11.1

 Fixed Bugs and Malfunctions

	Timers could sometimes timeout too early. This bug has now been fixed.
Automatic cancellation of timers created by erlang:send_after(Time, pid(),
Msg), and erlang:start_timer(Time, pid(), Msg) has been introduced. Timers
created with the receiver specified by a pid, will automatically be cancelled
when the receiver exits. For more information see the erlang man page.
In order to be able to maintain a larger amount of timers without increasing
the maintenance cost, the internal timer wheel and bif timer table have been
enlarged.
Also a number of minor bif timer optimizations have been implemented.
Own Id: OTP-5795 Aux Id: OTP-5090, seq8913, seq10139, OTP-5782

 Improvements and New Features

	Documentation improvements:
- documentation for erlang:link/1 corrected
- command line flag -code_path_cache added
- erl command line flags clarifications
- net_kernel clarifications
Own Id: OTP-5847

 Kernel 2.10.11

 Fixed Bugs and Malfunctions

	Several bug fixes and improvements in the global name registration facility
(see global):
	the name resolving procedure did not always unlink no longer registered
processes;
	the global name could sometimes hang when a nodedown was immediately
followed by a nodeup;
	global names were not always unregistered when a node went down;
	it is now possible to set and delete locks at the same time as the global
name server is resolving names--the handling of global locks has been
separated from registration of global names;

As of this version, global no longer supports nodes running Erlang/OTP R7B
or earlier.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5563

	The functions global:set_lock/3 and global:trans/4 now accept the value
0 (zero) of the Retries argument.
Own Id: OTP-5737

	The inet:getaddr(Addr, Family) no longer validates the Addr argument if it
is a 4 or 8 tuple containing the IP address, except for the size of the tuple
and that it contains integers in the correct range.
The reason for the change is that validation could cause the following
sequence of calls to fail:
{ok,Addr} = inet:getaddr(localhost, inet6), gen_tcp:connect(Addr, 7, [inet6])
Own Id: OTP-5743

 Improvements and New Features

	The previously undocumented and UNSUPPORTED zlib module has been updated in
an incompatible way and many bugs have been corrected. It is now also
documented.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-5715

	Added application interface functions which_applications/1, set_env/4
and unset_env/3, which take an additional Timeout argument. To be used in
situations where the standard gen_server timeout (5000ms) is not adequate.
Own Id: OTP-5724 Aux Id: seq10083

	Improved documentation regarding synchronized start of applications with
included applications (using start phases and application_starter).
Own Id: OTP-5754

	New socket options priority and tos for platforms that support them
(currently only Linux).
Own Id: OTP-5756

	The global name server has been optimized when it comes to maintaining a fully
connected network.
Own Id: OTP-5770

 Kernel 2.10.10.1

 Fixed Bugs and Malfunctions

	The native resolver has gotten an control API for extended debugging and soft
restart. It is: inet_gethost_native:control(Control)
Control = {debug_level,Level} | soft_restart
Level = integer() in the range 0-4.
Own Id: OTP-5751 Aux Id: EABln25013

 Kernel 2.10.10

 Fixed Bugs and Malfunctions

	If several processes (at the same node) simultaneously tried to start the same
distributed application, this could lead to application:start returning an
erroneous value, or even hang.
Own Id: OTP-5606 Aux Id: seq9838

 Improvements and New Features

	The manual pages for most of the Kernel and some of the STDLIB modules have
been updated, in particular regarding type definitions.
The documentation of the return value for erts:info/1 has been corrected.
The documentation for erlang:statistics/1 now lists all possible arguments.
Own Id: OTP-5360

	When the native resolver fails a gethostbyaddr lookup, nxdomain should be
returned. There should be no attempt to fallback on a routine that succeeds if
only the syntax of the IP address is valid. This has been fixed.
Own Id: OTP-5598 Aux Id: OTP-5576

	Replaced some tuple funs with the new fun M:F/A construct.
The high-order functions in the lists module no longer accept bad funs under
any circumstances. 'lists:map(bad_fun, [])' used to return '[]' but now
causes an exception.
Unused, broken compatibility code in the ets module was removed. (Thanks to
Dialyzer.)
Eliminated 5 discrepancies found by Dialyzer in the Appmon application.
Own Id: OTP-5633

	The possibility to have comments following the list of tuples in a config file
(file specified with the -config flag) has been added.
Own Id: OTP-5661 Aux Id: seq10003

 Kernel 2.10.9

 Fixed Bugs and Malfunctions

	'erl -config sys.config' would fail to start if the sys.config file did
not contain any whitespace at all after the dot. (Thanks to Anders Nygren.)
Own Id: OTP-5543

	A bug regarding tcp sockets which results in hanging gen_tcp:send/2 has been
corrected. To encounter this bug you needed one process that read from a
socket, one that wrote more date than the reader read out so the sender got
suspended, and then the reader closed the socket. (Reported and diagnosed by
Alexey Shchepin.)
Corrected a bug in the (undocumented and unsupported) option {packet,http}
for gen_tcp. (Thanks to Claes Wikstrom and Luke Gorrie.)
Updated the documentation regarding the second argument to gen_tcp:recv/2,
the Length to receive.
Own Id: OTP-5582 Aux Id: seq9839

 Improvements and New Features

	At startup, the Erlang resolver hosts table was used to look up the name of
the local (and possibly stand alone) host. This was incorrect. The configured
resolver method is now used for this purpose.
Own Id: OTP-5393

	The erlang:port_info/1 BIF is now documented. Minor corrections of the
documentation for erlang:port_info/2.
Added a note to the documentation of the math module that all functions are
not available on all platforms.
Added more information about the +c option in the erl man page in the ERTS
documentation.
Own Id: OTP-5555

	The new fun M:F/A construct creates a fun that refers to the latest version
of M:F/A. This syntax is meant to replace tuple funs {M,F} which have many
problems.
The new type test is_function(Fun,A) (which may be used
in guards) test whether Fun is a fun that can be applied with A arguments.
(Currently, Fun can also be a tuple fun.)
Own Id: OTP-5584

	According to the documentation global implements the equivalent of
register/2, which returns badarg if a process is already
registered. As it turns out there is no check in global if a process is
registered under more than one name. If some process is accidentally or by
design given several names, it is possible that the name registry becomes
inconsistent due to the way the resolve function is called when name clashes
are discovered (see register_name/3 in global).
In OTP R11B global will not allow the registration of a process under more
than one name. To help finding code where no will be returned, a Kernel
application variable, global_multi_name_action, is hereby introduced.
Depending on its value (info, warning, or error), messages are sent to
the error logger when global discovers that some process is given more than
one name. The variable only affects the node where it is defined.
Own Id: OTP-5603

 Kernel 2.10.8

 Improvements and New Features

	In case of a DNS lookup loop, inet_db:getbyname ends up building an infinite
list. This has been fixed.
Own Id: OTP-5449

	When doing an inet6 name lookup on an IPv4 address it was possible to get an
address on IPv4 format back. This has been corrected. Some other minor
inconsistencies regarding IPv6 name lookup have also been corrected.
Own Id: OTP-5576

 Kernel 2.10.7

 Fixed Bugs and Malfunctions

	Under certain circumstances the net_kernel could emit spurious nodedown
messages. This bug has been fixed.
Own Id: OTP-5396

	Removed description of the keep_zombies configuration parameter in the
kernel man page.
Own Id: OTP-5497

 Improvements and New Features

	Eliminated Dialyzer warnings (caused by dead code) in the init and
prim_file modules.
Own Id: OTP-5496

	inet_config now also checks the environment variable ERL_INETRC for a
possible user configuration file. See the ERTS User's Guide for details.
Own Id: OTP-5512

 Kernel 2.10.6

 Improvements and New Features

	The c option for the +B flag has been introduced which makes it possible
to use Ctrl-C (Ctrl-Break on Windows) to interrupt the shell process rather
than to invoke the emulator break handler. All new +B options are also
supported on Windows (werl) as of now. Furthermore, Ctrl-C on Windows has now
been reserved for copying text (what Ctrl-Ins was used for previously).
Ctrl-Break should be used for break handling. Lastly, the documentation of the
system flags has been updated.
Own Id: OTP-5388

	The possibility to start the Erlang shell in parallel with the rest of the
system was reintroduced for backwards compatibility in STDLIB 1.13.1. The flag
to be used for this is now called async_shell_start and has been documented.
New shells started from the JCL menu are not synchronized with init anymore.
This makes it possible to start a new shell (e.g. for debugging purposes) even
if the initial shell has not come up.
Own Id: OTP-5406 Aux Id: OTP-5218

 Kernel 2.10.5

 Fixed Bugs and Malfunctions

	Documentation for erlang:binary_to_float/1 deleted. The BIF itself was
removed several releases ago.
Updated documentation for apply/2 and apply/3.
Own Id: OTP-5391

 Improvements and New Features

	net_kernel:monitor_nodes/2 which takes a flag and an option list has been
added. By use of net_kernel:monitor_nodes/2 one can subscribe for
nodeup/nodedown messages with extra information. It is now possible to
monitor hidden nodes, and get nodedown reason. See the net_kernel
documentation for more information.
Own Id: OTP-5374

 Kernel 2.10.4

 Fixed Bugs and Malfunctions

	The application master for an application now terminates the application
faster, which reduces the risk for timeouts in other parts of the system.
Own Id: OTP-5363 Aux Id: EABln19084

	A BIF erlang:raise/3 has been added. See the manual for details. It is
intended for internal system programming only, advanced error handling.
Own Id: OTP-5376 Aux Id: OTP-5257

 Kernel 2.10.3

 Improvements and New Features

	With the -eval flag (erl -eval Expr), an arbitrary expression can be
evaluated during system initialization. This is documented in init.
Own Id: OTP-5260

	The unsupported and undocumented modules socks5, socks5_auth,
socks5_tcp, and socks5_udp have been removed.
Own Id: OTP-5266

 Kernel 2.10.1

 Fixed Bugs and Malfunctions

	The Pman 'trace shell' functionality was broken and has now been fixed.
Furthermore, Pman could not correctly find the pid of the active shell if more
than one shell process was running on the node. This has also been corrected.
Own Id: OTP-5191

	The documentation for the auth:open/1 function which no longer exists has
been removed. (Thanks to Miguel Barreiro.)
Own Id: OTP-5208

	Corrected the crc32/3 function in the undocumented and unsupported zlib
module.
Own Id: OTP-5227

 Improvements and New Features

	You can now start Erlang with the -rsh flag which gives you a remote initial
shell instead of a local one. Example:
 erl -sname this_node -rsh other_node@other_host
Own Id: OTP-5210

	If /etc/hosts specified two hosts with the same IP address (on separate
lines), only the last host would be registered by inet_db during inet
configuration. This has been corrected now so that both aliases are registered
with the same IP address.
Own Id: OTP-5212 Aux Id: seq7128

	The documentation for BIFs that take I/O lists have been clarified. Those are
list_to_binary/1,
port_command/2, port_control/3.
Documentation for all is_* BIFs (such as is_atom/1) has
been added.
Removed the documentation for erlang:float_to_binary/2 which was removed
from the run-time system several releases ago.
Own Id: OTP-5222

Introduction

 Scope

The Kernel application has all the code necessary to run the Erlang runtime
system: file servers, code servers, and so on.
The Kernel application is the first application started. It is mandatory in the
sense that the minimal system based on Erlang/OTP consists of Kernel and STDLIB.
Kernel contains the following functional areas:
	Start, stop, supervision, configuration, and distribution of applications
	Code loading
	Logging
	Global name service
	Supervision of Erlang/OTP
	Communication with sockets
	Operating system interface

 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language.

Socket Usage

 Introduction

The socket interface (module) is basically a "thin" layer on top of the OS
socket interface. It is assumed that, unless you have special needs,
gen_[tcp|udp|sctp] should be sufficient (when they become available).
Note that just because we have a documented and described option, it does not
mean that the OS supports it. So its recommended that the user reads the
platform specific documentation for the option used.

 Asynchronous calls

Some functions allow for an asynchronous call
(accept/2,
connect/3, recv/3,4,
recvfrom/3,4,
recvmsg/2,3,5,
send/3,4, sendmsg/3,4
and sendto/4,5). This is achieved by setting the
Timeout argument to nowait. For instance, if calling the
recv/3 function with Timeout set to nowait (i.e.
recv(Sock, 0, nowait)) when there is actually nothing to read, it will return
with:
	On Unix - {select,SelectInfo}
SelectInfo contains the SelectHandle.

	On Windows -
{completion,CompletionInfo}
CompletionInfo contains the
CompletionHandle.

When data eventually arrives a 'select' or 'completion' message will be sent to
the caller:
	On Unix - {'$socket', socket(), select, SelectHandle}
The caller can then make another call to the recv function and now expect
data.
Note that all other users are locked out until the 'current user' has called
the function (recv in this case). So either immediately call the function or
cancel.

	On Windows -
{'$socket', socket(), completion, {CompletionHandle, CompletionStatus}}
The CompletionStatus contains the result of the operation (read).

The user must also be prepared to receive an abort message:
	{'$socket', socket(), abort, Info}

If the operation is aborted for whatever reason (e.g. if the socket is closed
"by someone else"). The Info part contains the abort reason (in this case that
the socket has been closed Info = {SelectHandle, closed}).
The general form of the 'socket' message is:
	{'$socket', Sock :: socket(), Tag :: atom(), Info :: term()}

Where the format of Info is a function of Tag:
	Tag	Info value type
	select	select_handle()
	completion	{completion_handle(), CompletionStatus}
	abort	{select_handle(), Reason :: term()}

Table: socket message info value type
The select_handle() is the same as was returned in the
SelectInfo.
The completion_handle() is the same as was returned in the
CompletionInfo.

 Socket Registry

The socket registry is how we keep track of sockets. There are two functions
that can be used for interaction: socket:number_of/0 and
socket:which_sockets/1.
In systems which create and delete many sockets dynamically, it (the socket
registry) could become a bottleneck. For such systems, there are a couple of
ways to control the use of the socket registry.
Firstly, its possible to effect the global default value when building OTP from
source with the two configure options:
--enable-esock-socket-registry (default) | --disable-esock-socket-registry
Second, its possible to effect the global default value by setting the
environment variable ESOCK_USE_SOCKET_REGISTRY (boolean) before starting the
erlang.
Third, its possible to alter the global default value in runtime by calling the
function use_registry/1.
And finally, its possible to override the global default when creating a socket
(with open/2 and open/4) by providing
the attribute use_registry (boolean) in the their Opts argument (which
effects that specific socket).

 Example

This example is intended to show how to create a simple (echo) server
(and client).
-module(example).

-export([client/2, client/3]).
-export([server/0, server/1, server/2]).

%% ==

%% === Client ===

client(#{family := Family} = ServerSockAddr, Msg)
 when is_list(Msg) orelse is_binary(Msg) ->
 {ok, Sock} = socket:open(Family, stream, default),
 ok = maybe_bind(Sock, Family),
 ok = socket:connect(Sock, ServerSockAddr),
 client_exchange(Sock, Msg);

client(ServerPort, Msg)
 when is_integer(ServerPort) andalso (ServerPort > 0) ->
 Family = inet, % Default
 Addr = get_local_addr(Family), % Pick an address
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => ServerPort},
 client(SockAddr, Msg).

client(ServerPort, ServerAddr, Msg)
 when is_integer(ServerPort) andalso (ServerPort > 0) andalso
 is_tuple(ServerAddr) ->
 Family = which_family(ServerAddr),
 SockAddr = #{family => Family,
		 addr => ServerAddr,
		 port => ServerPort},
 client(SockAddr, Msg).

%% Send the message to the (echo) server and wait for the echo to come back.
client_exchange(Sock, Msg) when is_list(Msg) ->
 client_exchange(Sock, list_to_binary(Msg));
client_exchange(Sock, Msg) when is_binary(Msg) ->
 ok = socket:send(Sock, Msg, infinity),
 {ok, Msg} = socket:recv(Sock, byte_size(Msg), infinity),
 ok.

%% ==

%% === Server ===

server() ->
 %% Make system choose port (and address)
 server(0).

%% This function return the port and address that it actually uses,
%% in case server/0 or server/1 (with a port number) was used to start it.

server(#{family := Family, addr := Addr, port := _} = SockAddr) ->
 {ok, Sock} = socket:open(Family, stream, tcp),
 ok = socket:bind(Sock, SockAddr),
 ok = socket:listen(Sock),
 {ok, #{port := Port}} = socket:sockname(Sock),
 Acceptor = start_acceptor(Sock),
 {ok, {Port, Addr, Acceptor}};

server(Port) when is_integer(Port) ->
 Family = inet, % Default
 Addr = get_local_addr(Family), % Pick an address
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => Port},
 server(SockAddr).

server(Port, Addr)
 when is_integer(Port) andalso (Port >= 0) andalso
 is_tuple(Addr) ->
 Family = which_family(Addr),
 SockAddr = #{family => Family,
		 addr => Addr,
		 port => Port},
 server(SockAddr).

%% --- Echo Server - Acceptor ---

start_acceptor(LSock) ->
 Self = self(),
 {Pid, MRef} = spawn_monitor(fun() -> acceptor_init(Self, LSock) end),
 receive
	{'DOWN', MRef, process, Pid, Info} ->
	 erlang:error({failed_starting_acceptor, Info});
	{Pid, started} ->
	 %% Transfer ownership
	 socket:setopt(LSock, otp, owner, Pid),
	 Pid ! {self(), continue},
	 erlang:demonitor(MRef),
	 Pid
 end.

acceptor_init(Parent, LSock) ->
 Parent ! {self(), started},
 receive
	{Parent, continue} ->
	 ok
 end,
 acceptor_loop(LSock).

acceptor_loop(LSock) ->
 case socket:accept(LSock, infinity) of
	{ok, ASock} ->
	 start_handler(ASock),
	 acceptor_loop(LSock);
	{error, Reason} ->
	 erlang:error({accept_failed, Reason})
 end.

%% --- Echo Server - Handler ---

start_handler(Sock) ->
 Self = self(),
 {Pid, MRef} = spawn_monitor(fun() -> handler_init(Self, Sock) end),
 receive
	{'DOWN', MRef, process, Pid, Info} ->
	 erlang:error({failed_starting_handler, Info});
	{Pid, started} ->
	 %% Transfer ownership
	 socket:setopt(Sock, otp, owner, Pid),
	 Pid ! {self(), continue},
	 erlang:demonitor(MRef),
	 Pid
 end.

handler_init(Parent, Sock) ->
 Parent ! {self(), started},
 receive
	{Parent, continue} ->
	 ok
 end,
 handler_loop(Sock, undefined).

%% No "ongoing" reads
%% The use of 'nowait' here is clearly *overkill* for this use case,
%% but is intended as an example of how to use it.
handler_loop(Sock, undefined) ->
 case socket:recv(Sock, 0, nowait) of
	{ok, Data} ->
	 echo(Sock, Data),
	 handler_loop(Sock, undefined);

	{select, SelectInfo} ->
	 handler_loop(Sock, SelectInfo);

	{completion, CompletionInfo} ->
	 handler_loop(Sock, CompletionInfo);

	{error, Reason} ->
	 erlang:error({recv_failed, Reason})
 end;

%% This is the standard (asyncronous) behaviour.
handler_loop(Sock, {select_info, recv, SelectHandle}) ->
 receive
	{'$socket', Sock, select, SelectHandle} ->
	 case socket:recv(Sock, 0, nowait) of
		{ok, Data} ->
		 echo(Sock, Data),
		 handler_loop(Sock, undefined);

		{select, NewSelectInfo} ->
		 handler_loop(Sock, NewSelectInfo);

		{error, Reason} ->
		 erlang:error({recv_failed, Reason})
	 end
 end;

%% This is the (asyncronous) behaviour on platforms that support 'completion',
%% currently only Windows.
handler_loop(Sock, {completion_info, recv, CompletionHandle}) ->
 receive
	{'$socket', Sock, completion, {CompletionHandle, CompletionStatus}} ->
	 case CompletionStatus of
		{ok, Data} ->
		 echo(Sock, Data),
		 handler_loop(Sock, undefined);
		{error, Reason} ->
		 erlang:error({recv_failed, Reason})
	 end
 end.

echo(Sock, Data) when is_binary(Data) ->
 ok = socket:send(Sock, Data, infinity),
 io:format("** ECHO **"
	 "~n~s~n", [binary_to_list(Data)]).

%% ==

%% === Utility functions ===

maybe_bind(Sock, Family) ->
 maybe_bind(Sock, Family, os:type()).

maybe_bind(Sock, Family, {win32, _}) ->
 Addr = get_local_addr(Family),
 SockAddr = #{family => Family,
 addr => Addr,
 port => 0},
 socket:bind(Sock, SockAddr);
maybe_bind(_Sock, _Family, _OS) ->
 ok.

%% The idea with this is extract a "usable" local address
%% that can be used even from *another* host. And doing
%% so using the net module.

get_local_addr(Family) ->
 Filter =
	fun(#{addr := #{family := Fam},
	 flags := Flags}) ->
		(Fam =:= Family) andalso (not lists:member(loopback, Flags));
	 (_) ->
		false
	end,
 {ok, [SockAddr|_]} = net:getifaddrs(Filter),
 #{addr := #{addr := Addr}} = SockAddr,
 Addr.

which_family(Addr) when is_tuple(Addr) andalso (tuple_size(Addr) =:= 4) ->
 inet;
which_family(Addr) when is_tuple(Addr) andalso (tuple_size(Addr) =:= 8) ->
 inet6.

 Socket Options

Options for level otp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	assoc_id	integer()	no	yes	type = seqpacket, protocol = sctp, is an association
	debug	boolean()	yes	yes	none
	iow	boolean()	yes	yes	none
	controlling_process	pid()	yes	yes	none
	rcvbuf	default | pos_integer() | {pos_integer(), pos_ineteger()}	yes	yes	The tuple format is not allowed on Windows. 'default' only valid for set. The tuple form is only valid for type 'stream' and protocol 'tcp'.
	rcvctrlbuf	default | pos_integer()	yes	yes	default only valid for set
	sndctrlbuf	default | pos_integer()	yes	yes	default only valid for set
	fd	integer()	no	yes	none
	use_registry	boolean()	no	yes	the value is set when the socket is created, by a call to open/2 or open/4.

Table: option levels
Options for level socket:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	acceptconn	boolean()	no	yes	none
	bindtodevice	string()	yes	yes	Before Linux 3.8, this socket option could be set, but not get. Only works for some socket types (e.g. inet). If empty value is set, the binding is removed.
	broadcast	boolean()	yes	yes	type = dgram
	bsp_state	map()	no	yes	Windows only
	debug	integer()	yes	yes	may require admin capability
	domain	domain()	no	yes	Not on FreeBSD (for instance)
	dontroute	boolean()	yes	yes	none
	exclusiveaddruse	boolean()	yes	yes	Windows only
	keepalive	boolean()	yes	yes	none
	linger	abort | linger()	yes	yes	none
	maxdg	integer()	no	yes	Windows only
	max_msg_size	integer()	no	yes	Windows only
	oobinline	boolean()	yes	yes	none
	peek_off	integer()	yes	yes	domain = local (unix). Currently disabled due to a possible infinite loop when calling recv([peek]) the second time.
	priority	integer()	yes	yes	none
	protocol	protocol()	no	yes	Not on (some) Darwin (for instance)
	rcvbuf	non_neg_integer()	yes	yes	none
	rcvlowat	non_neg_integer()	yes	yes	none
	rcvtimeo	timeval()	yes	yes	This option is not normally supported (see why below). OTP has to be explicitly built with the --enable-esock-rcvsndtime configure option for this to be available. Since our implementation is nonblocking, its unknown if and how this option works, or even if it may cause malfunctions. Therefore, we do not recommend setting this option. Instead, use the Timeout argument to, for instance, the recv/3 function.
	reuseaddr	boolean()	yes	yes	none
	reuseport	boolean()	yes	yes	domain = inet | inet6
	sndbuf	non_neg_integer()	yes	yes	none
	sndlowat	non_neg_integer()	yes	yes	not changeable on Linux
	sndtimeo	timeval()	yes	yes	This option is not normally supported (see why below). OTP has to be explicitly built with the --enable-esock-rcvsndtime configure option for this to be available. Since our implementation is nonblocking, its unknown if and how this option works, or even if it may cause malfunctions. Therefore, we do not recommend setting this option. Instead, use the Timeout argument to, for instance, the send/3 function.
	timestamp	boolean()	yes	yes	none
	type	type()	no	yes	none

Table: socket options
Options for level ip:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	add_membership	ip_mreq()	yes	no	none
	add_source_membership	ip_mreq_source()	yes	no	none
	block_source	ip_mreq_source()	yes	no	none
	drop_membership	ip_mreq()	yes	no	none
	drop_source_membership	ip_mreq_source()	yes	no	none
	freebind	boolean()	yes	yes	none
	hdrincl	boolean()	yes	yes	type = raw
	minttl	integer()	yes	yes	type = raw
	msfilter	null | ip_msfilter()	yes	no	none
	mtu	integer()	no	yes	type = raw
	mtu_discover	ip_pmtudisc()	yes	yes	none
	multicast_all	boolean()	yes	yes	none
	multicast_if	any | ip4_address()	yes	yes	none
	multicast_loop	boolean()	yes	yes	none
	multicast_ttl	uint8()	yes	yes	none
	nodefrag	boolean()	yes	yes	type = raw
	pktinfo	boolean()	yes	yes	type = dgram
	recvdstaddr	boolean()	yes	yes	type = dgram
	recverr	boolean()	yes	yes	none
	recvif	boolean()	yes	yes	type = dgram | raw
	recvopts	boolean()	yes	yes	type =/= stream
	recvorigdstaddr	boolean()	yes	yes	none
	recvttl	boolean()	yes	yes	type =/= stream
	retopts	boolean()	yes	yes	type =/= stream
	router_alert	integer()	yes	yes	type = raw
	sendsrcaddr	boolean()	yes	yes	none
	tos	ip_tos()	yes	yes	some high-priority levels may require superuser capability
	transparent	boolean()	yes	yes	requires admin capability
	ttl	integer()	yes	yes	none
	unblock_source	ip_mreq_source()	yes	no	none

Table: ip options
Options for level ipv6:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	addrform	inet	yes	no	allowed only for IPv6 sockets that are connected and bound to a v4-mapped-on-v6 address
	add_membership	ipv6_mreq()	yes	no	none
	authhdr	boolean()	yes	yes	type = dgram | raw, obsolete?
	drop_membership	ipv6_mreq()	yes	no	none
	dstopts	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	flowinfo	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	hoplimit	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. FreeBSD) is used to set in order to get hoplimit as a control message heeader. On others (e.g. Linux), recvhoplimit is set in order to get hoplimit.
	hopopts	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	mtu	boolean()	yes	yes	Get: Only after the socket has been connected
	mtu_discover	ipv6_pmtudisc()	yes	yes	none
	multicast_hops	default | uint8()	yes	yes	none
	multicast_if	integer()	yes	yes	type = dgram | raw
	multicast_loop	boolean()	yes	yes	none
	recverr	boolean()	yes	yes	none
	recvhoplimit	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. Linux), recvhoplimit is set in order to get hoplimit
	recvpktinfo | pktinfo	boolean()	yes	yes	type = dgram | raw. On some platforms (e.g. FreeBSD) is used to set in order to get hoplimit as a control message heeader. On others (e.g. Linux), recvhoplimit is set in order to get hoplimit.
	recvtclass	boolean()	yes	yes	type = dgram | raw. On some platforms is used to set (=true) in order to get the tclass control message heeader. On others, tclass is set in order to get tclass control message heeader.
	router_alert	integer()	yes	yes	type = raw
	rthdr	boolean()	yes	yes	type = dgram | raw, requires superuser privileges to update
	tclass	integer()	yes	yes	Set the traffic class associated with outgoing packets. RFC3542.
	unicast_hops	default | uint8()	yes	yes	none
	v6only	boolean()	yes	no	none

Table: ipv6 options
Options for level tcp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	congestion	string()	yes	yes	none
	cork	boolean()	yes	yes	'nopush' one some platforms (FreeBSD)
	keepcnt	integer()	yes	yes	On Windows (at least), it is illegal to set to a value greater than 255.
	keepidle	integer()	yes	yes	none
	keepintvl	integer()	yes	yes	none
	maxseg	integer()	yes	yes	Set not allowed on all platforms.
	nodelay	boolean()	yes	yes	none
	nopush	boolean()	yes	yes	'cork' on some platforms (Linux). On Darwin this has a different meaning than on, for instance, FreeBSD.

Table: tcp options
Options for level udp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	cork	boolean()	yes	yes	none

Table: udp options
Options for level sctp:
	Option Name	Value Type	Set	Get	Other Requirements and comments
	associnfo	sctp_assocparams()	yes	yes	none
	autoclose	non_neg_integer()	yes	yes	none
	disable_fragments	boolean()	yes	yes	none
	events	sctp_event_subscribe()	yes	no	none
	initmsg	sctp_initmsg()	yes	yes	none
	maxseg	non_neg_integer()	yes	yes	none
	nodelay	boolean()	yes	yes	none
	rtoinfo	sctp_rtoinfo()	yes	yes	none

Table: sctp options

Logging

Erlang provides a standard API for logging through Logger, which is part of
the Kernel application. Logger consists of the API for issuing log events, and a
customizable backend where log handlers, filters and formatters can be plugged
in.
By default, the Kernel application installs one log handler at system start.
This handler is named default. It receives and processes standard log events
produced by the Erlang runtime system, standard behaviours and different
Erlang/OTP applications. The log events are by default written to the terminal.
You can also configure the system so that the default handler prints log events
to a single file, or to a set of wrap logs via disk_log.
By configuration, you can also modify or disable the default handler, replace it
by a custom handler, and install additional handlers.

 Overview

A log event consists of a log level, the message to be logged, and
metadata.
The Logger backend forwards log events from the API, first through a set of
primary filters, then through a set of secondary filters attached to each log
handler. The secondary filters are in the following named handler filters.
Each filter set consists of a log level check, followed by zero or more
filter functions.
The following figure shows a conceptual overview of Logger. The figure shows two
log handlers, but any number of handlers can be installed.

title: Conceptual Overview

flowchart TD
 DB[(Config DB)]
 API ---> ML[Module Level <hr> Global Level <hr> Global Filters]
 API -.Update configuration.-> DB
 ML -.-> DB
 ML ---> HL1[Hander Level <hr> Handler Filter]
 ML ---> HL2[Hander Level <hr> Handler Filter]
 HL1 ---> HC1[Handler Callback]
 HL2 ---> HC2[Handler Callback]
 HL1 -.-> DB
 HL2 -.-> DB
 subgraph Legend
 direction LR
 start1[] -->|Log event flow| stop1[]
 style start1 height:0px;
 style stop1 height:0px;
 start2[] -.->|Look up configuration| stop2[]
 style start2 height:0px;
 style stop2 height:0px;
 end
Log levels are expressed as atoms. Internally in Logger, the atoms are mapped to
integer values, and a log event passes the log level check if the integer value
of its log level is less than or equal to the currently configured log level.
That is, the check passes if the event is equally or more severe than the
configured level. See section Log Level for a
listing and description of all log levels.
The primary log level can be overridden by a log level configured per module.
This is to, for instance, allow more verbose logging from a specific part of the
system.
Filter functions can be used for more sophisticated filtering than the log level
check provides. A filter function can stop or pass a log event, based on any of
the event's contents. It can also modify all parts of the log event. See section
Filters for more details.
If a log event passes through all primary filters and all handler filters for a
specific handler, Logger forwards the event to the handler callback. The
handler formats and prints the event to its destination. See section
Handlers for more details.
Everything up to and including the call to the handler callbacks is executed on
the client process, that is, the process where the log event was issued. It is
up to the handler implementation if other processes are involved or not.
The handlers are called in sequence, and the order is not defined.

 Logger API

The API for logging consists of a set of macros, and a set
of functions on the form logger:Level/1,2,3, which are all shortcuts for
logger:log(Level,Arg1[,Arg2[,Arg3]]).
The macros are defined in logger.hrl, which is included in a module with the
directive
-include_lib("kernel/include/logger.hrl").
The difference between using the macros and the exported functions is that
macros add location (originator) information to the metadata, and performs lazy
evaluation by wrapping the logger call in a case statement, so it is only
evaluated if the log level of the event passes the primary log level check.

 Log Level

The log level indicates the severity of a event. In accordance with the Syslog
protocol, RFC 5424, eight log levels can
be specified. The following table lists all possible log levels by name (atom),
integer value, and description:
	Level	Integer	Description
	emergency	0	system is unusable
	alert	1	action must be taken immediately
	critical	2	critical conditions
	error	3	error conditions
	warning	4	warning conditions
	notice	5	normal but significant conditions
	info	6	informational messages
	debug	7	debug-level messages

Table: Log Levels
Notice that the integer value is only used internally in Logger. In the API, you
must always use the atom. To compare the severity of two log levels, use
logger:compare_levels/2.

 Log Message

The log message contains the information to be logged. The message can consist
of a format string and arguments (given as two separate parameters in the Logger
API), a string or a report.
Example, format string and arguments:
logger:error("The file does not exist: ~ts",[Filename])
Example, string:
logger:notice("Something strange happened!")
A report, which is either a map or a key-value list, is the preferred way to log
using Logger as it makes it possible for different backends to filter and format
the log event as it needs to.
Example, report:
?LOG_ERROR(#{ user => joe, filename => Filename, reason => enoent })
Reports can be accompanied by a report callback specified in the log event's
metadata. The report callback is a convenience
function that the formatter can use to convert
the report to a format string and arguments, or directly to a string. The
formatter can also use its own conversion function, if no callback is provided,
or if a customized formatting is desired.
The report callback must be a fun with one or two arguments. If it takes one
argument, this is the report itself, and the fun returns a format string and
arguments:
fun((logger:report()) -> {io:format(),[term()]})
If it takes two arguments, the first is the report, and the second is a map
containing extra data that allows direct conversion to a string:
fun((logger:report(),logger:report_cb_config()) -> unicode:chardata())
The fun must obey the depth and chars_limit parameters provided in the
second argument, as the formatter cannot do anything useful of these parameters
with the returned string. The extra data also contains a field named
single_line, indicating if the printed log message may contain line breaks or
not. This variant is used when the formatting of the report depends on the size
or single line parameters.
Example, report, and metadata with report callback:
logger:debug(#{got => connection_request, id => Id, state => State},
 #{report_cb => fun(R) -> {"~p",[R]} end})
The log message can also be provided through a fun for lazy evaluation. The fun
is only evaluated if the primary log level check passes, and is therefore
recommended if it is expensive to generate the message. The lazy fun must return
a string, a report, or a tuple with format string and arguments.

 Metadata

Metadata contains additional data associated with a log message. Logger inserts
some metadata fields by default, and the client can add custom metadata in three
different ways:
	Set primary metadata - Primary metadata applies is the base metadata given
to all log events. At startup it can be set using the kernel configuration
parameter logger_metadata. At run-time it can
be set and updated using logger:set_primary_config/1 and
logger:update_primary_config/1 respectively.

	Set process metadata - Process metadata is set and updated with
logger:set_process_metadata/1 and logger:update_process_metadata/1,
respectively. This metadata applies to the process on which these calls are
made, and Logger adds the metadata to all log events issued on that process.

	Add metadata to a specific log event - Metadata associated with one
specific log event is given as the last parameter to the log macro or Logger
API function when the event is issued. For example:
?LOG_ERROR("Connection closed",#{context => server})

See the description of the logger:metadata/0 type for information about
which default keys Logger inserts, and how the different metadata maps are
merged.

 Filters

Filters can be primary, or attached to a specific handler. Logger calls the
primary filters first, and if they all pass, it calls the handler filters for
each handler. Logger calls the handler callback only if all filters attached to
the handler in question also pass.
A filter is defined as:
{FilterFun, Extra}
where FilterFun is a function of arity 2, and Extra is any term. When
applying the filter, Logger calls the function with the log event as the first
argument, and the value of Extra as the second argument. See
logger:filter/0 for type definitions.
The filter function can return stop, ignore or the (possibly modified) log
event.
If stop is returned, the log event is immediately discarded. If the filter is
primary, no handler filters or callbacks are called. If it is a handler filter,
the corresponding handler callback is not called, but the log event is forwarded
to filters attached to the next handler, if any.
If the log event is returned, the next filter function is called with the
returned value as the first argument. That is, if a filter function modifies the
log event, the next filter function receives the modified event. The value
returned from the last filter function is the value that the handler callback
receives.
If the filter function returns ignore, it means that it did not recognize the
log event, and thus leaves to other filters to decide the event's destiny.
The configuration option filter_default specifies the behaviour if all filter
functions return ignore, or if no filters exist. filter_default is by
default set to log, meaning that if all existing filters ignore a log event,
Logger forwards the event to the handler callback. If filter_default is set to
stop, Logger discards such events.
Primary filters are added with logger:add_primary_filter/2 and removed with
logger:remove_primary_filter/1. They can also be added at system start via the
Kernel configuration parameter logger.
Handler filters are added with logger:add_handler_filter/3 and removed with
logger:remove_handler_filter/2. They can also be specified directly in the
configuration when adding a handler with logger:add_handler/3 or via the
Kernel configuration parameter logger.
To see which filters are currently installed in the system, use
logger:get_config/0, or logger:get_primary_config/0 and
logger:get_handler_config/1. Filters are listed in the order they are applied,
that is, the first filter in the list is applied first, and so on.
For convenience, the following built-in filters exist:
	logger_filters:domain/2 - Provides a way of filtering log events based
on a domain field in Metadata.

	logger_filters:level/2 - Provides a way of filtering log events based on
the log level.

	logger_filters:progress/2 - Stops or allows progress reports from
supervisor and application_controller.

	logger_filters:remote_gl/2 - Stops or allows log events originating from
a process that has its group leader on a remote node.

 Handlers

A handler is defined as a module exporting at least the following callback
function:
log(LogEvent, Config) -> term()
This function is called when a log event has passed through all primary filters,
and all handler filters attached to the handler in question. The function call
is executed on the client process, and it is up to the handler implementation if
other processes are involved or not.
Logger allows adding multiple instances of a handler callback. That is, if a
callback module implementation allows it, you can add multiple handler instances
using the same callback module. The different instances are identified by unique
handler identities.
In addition to the mandatory callback function log/2, a handler module can
export the optional callback functions adding_handler/1, changing_config/3,
filter_config/1, and removing_handler/1. See logger_handler for more
information about these function.
The following built-in handlers exist:
	logger_std_h - This is the default handler used by OTP. Multiple
instances can be started, and each instance will write log events to a given
destination, terminal or file.

	logger_disk_log_h - This handler behaves much like logger_std_h,
except it uses disk_log as its destination.

	error_logger - This handler is provided for
backwards compatibility only. It is not started by default, but will be
automatically started the first time an error_logger event handler is added
with
error_logger:add_report_handler/1,2.
The old error_logger event handlers in STDLIB and SASL still exist, but they
are not added by Erlang/OTP 21.0 or later.

 Formatters

A formatter can be used by the handler implementation to do the final formatting
of a log event, before printing to the handler's destination. The handler
callback receives the formatter information as part of the handler
configuration, which is passed as the second argument to
HModule:log/2.
The formatter information consist of a formatter module, FModule and its
configuration, FConfig. FModule must export the following function, which
can be called by the handler:
format(LogEvent,FConfig)
	-> FormattedLogEntry
The formatter information for a handler is set as a part of its configuration
when the handler is added. It can also be changed during runtime with
logger:set_handler_config(HandlerId,formatter,{Module,FConfig}) ,
which overwrites the current formatter information, or with
logger:update_formatter_config/2,3,
which only modifies the formatter configuration.
If the formatter module exports the optional callback function
check_config(FConfig), Logger calls
this function when the formatter information is set or modified, to verify the
validity of the formatter configuration.
If no formatter information is specified for a handler, Logger uses
logger_formatter as default. See the logger_formatter manual page for more
information about this module.

 Configuration

At system start, Logger is configured through Kernel configuration parameters.
The parameters that apply to Logger are described in section
Kernel Configuration Parameters.
Examples are found in section
Configuration Examples.
During runtime, Logger configuration is changed via API functions. See section
Configuration API Functions in the logger
manual page.

 Primary Logger Configuration

Logger API functions that apply to the primary Logger configuration are:
	get_primary_config/0
	set_primary_config/1,2
	update_primary_config/1
	add_primary_filter/2
	remove_primary_filter/1

The primary Logger configuration is a map with the following keys:
	level =logger:level/0 | all | none - Specifies
the primary log level, that is, log event that are equally or more severe than
this level, are forwarded to the primary filters. Less severe log events are
immediately discarded.
See section Log Level for a listing and
description of possible log levels.
The initial value of this option is set by the Kernel configuration parameter
logger_level. It is changed during runtime
with
logger:set_primary_config(level,Level).
Defaults to notice.

	filters = [{FilterId,Filter}] - Specifies the primary filters.
	FilterId = logger:filter_id/0
	Filter = logger:filter/0

The initial value of this option is set by the Kernel configuration parameter
logger. During runtime, primary
filters are added and removed with logger:add_primary_filter/2 and
logger:remove_primary_filter/1, respectively.
See section Filters for more detailed
information.
Defaults to [].

	filter_default = log | stop - Specifies what happens to a log event if
all filters return ignore, or if no filters exist.
See section Filters for more information about
how this option is used.
Defaults to log.

	metadata =metadata() - The primary metadata
to be used for all log calls.
See section Metadata for more information about
how this option is used.
Defaults to #{}.

 Handler Configuration

Logger API functions that apply to handler configuration are:
	get_handler_config/0,1
	set_handler_config/2,3
	update_handler_config/2,3
	add_handler_filter/3
	remove_handler_filter/2
	update_formatter_config/2,3

The configuration for a handler is a map with the following keys:
	id = logger_handler:id/0 - Automatically inserted by Logger. The
value is the same as the HandlerId specified when adding the handler, and it
cannot be changed.

	module = module() - Automatically inserted by Logger. The value is the
same as the Module specified when adding the handler, and it cannot be
changed.

	level = logger:level/0 | all | none - Specifies the log level for
the handler, that is, log events that are equally or more severe than this
level, are forwarded to the handler filters for this handler.
See section Log Level for a listing and
description of possible log levels.
The log level is specified when adding the handler, or changed during runtime
with, for instance,
logger:set_handler_config(HandlerId,level,Level).
Defaults to all.

	filters = [{FilterId,Filter}] - Specifies the handler filters.
	FilterId = logger:filter_id/0
	Filter = logger:filter/0

Handler filters are specified when adding the handler, or added or removed
during runtime with logger:add_handler_filter/3 and
logger:remove_handler_filter/2, respectively.
See Filters for more detailed information.
Defaults to [].

	filter_default = log | stop - Specifies what happens to a log event if
all filters return ignore, or if no filters exist.
See section Filters for more information about
how this option is used.
Defaults to log.

	formatter = {FormatterModule,FormatterConfig} - Specifies a formatter
that the handler can use for converting the log event term to a printable
string.
	FormatterModule = module()
	FormatterConfig = logger:formatter_config/0

The formatter information is specified when adding the handler. The formatter
configuration can be changed during runtime with
logger:update_formatter_config/2,3, or
the complete formatter information can be overwritten with, for instance,
logger:set_handler_config/3.
See section Formatters for more detailed
information.
Defaults to {logger_formatter,DefaultFormatterConfig}. See the
logger_formatter manual page for information about this formatter and its
default configuration.

	config = term() - Handler specific configuration, that is, configuration
data related to a specific handler implementation.
The configuration for the built-in handlers is described in the
logger_std_h and logger_disk_log_h manual
pages.

Notice that level and filters are obeyed by Logger itself before forwarding
the log events to each handler, while formatter and all handler specific
options are left to the handler implementation.

 Kernel Configuration Parameters

The following Kernel configuration parameters apply to Logger:
	logger = [Config] - Specifies the configuration
for Logger, except the primary log level, which is specified
with logger_level, and the compatibility
with SASL Error Logging, which is specified with
logger_sasl_compatible.
With this parameter, you can modify or disable the default handler, add custom
handlers and primary logger filters, set log levels per module, and modify the
proxy configuration.
Config is any (zero or more) of the following:
	{handler, default, undefined} - Disables the default handler. This
allows another application to add its own default handler.
Only one entry of this type is allowed.

	{handler, HandlerId, Module, HandlerConfig} - If HandlerId is
default, then this entry modifies the default handler, equivalent to
calling
 logger:remove_handler(default)

followed by
 logger:add_handler(default, Module, HandlerConfig)

For all other values of HandlerId, this entry adds a new handler,
equivalent to calling
 logger:add_handler(HandlerId, Module, HandlerConfig)

Multiple entries of this type are allowed.

	{filters, FilterDefault, [Filter]} - Adds the specified primary
filters.
	FilterDefault = log | stop

	Filter = {FilterId, {FilterFun, FilterConfig}}

Equivalent to calling
 logger:add_primary_filter(FilterId, {FilterFun, FilterConfig})

for each Filter.
FilterDefault specifies the behaviour if all primary filters return
ignore, see section Filters.
Only one entry of this type is allowed.

	{module_level, Level, [Module]} - Sets module log level for the given
modules. Equivalent to calling
 logger:set_module_level(Module, Level)
for each Module.
Multiple entries of this type are allowed.

	{proxy, ProxyConfig} - Sets the proxy configuration, equivalent to
calling
 logger:set_proxy_config(ProxyConfig)

Only one entry of this type is allowed.

See section Configuration Examples for
examples using the logger parameter for system configuration.

	logger_metadata = map() - Specifies the primary
metadata. See the kernel(6) manual page for
more information about this parameter.

	logger_level = Level - Specifies the primary log
level. See the kernel(6) manual page for more
information about this parameter.

	logger_sasl_compatible = true | false -
Specifies Logger's compatibility with
SASL Error Logging. See the
kernel(6) manual page for more
information about this parameter.

 Configuration Examples

The value of the Kernel configuration parameter logger is a list of tuples. It
is possible to write the term on the command line when starting an erlang node,
but as the term grows, a better approach is to use the system configuration
file. See the config(4) manual page for more information about
this file.
Each of the following examples shows a simple system configuration file that
configures Logger according to the description.
Modify the default handler to print to a file instead of
standard_io:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h, % {handler, HandlerId, Module,
 #{config => #{file => "log/erlang.log"}}} % Config}
]}]}].
Modify the default handler to print each log event as a single line:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter, #{single_line => true}}}}
]}]}].
Modify the default handler to print the pid of the logging process for each log
event:
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{formatter => {logger_formatter,
 #{template => [time," ",pid," ",msg,"\n"]}}}}
]}]}].
Modify the default handler to only print errors and more severe log events to
"log/erlang.log", and add another handler to print all log events to
"log/debug.log".
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{level => error,
 config => #{file => "log/erlang.log"}}},
 {handler, info, logger_std_h,
 #{level => debug,
 config => #{file => "log/debug.log"}}}
]}]}].

 Backwards Compatibility with error_logger

Logger provides backwards compatibility with error_logger in the following
ways:
	API for Logging - The error_logger API still exists, but should only be
used by legacy code. It will be removed in a later release.
Calls to error_logger:error_report/1,2,
error_logger:error_msg/1,2, and corresponding
functions for warning and info messages, are all forwarded to Logger as calls
to logger:log(Level,Report,Metadata).
Level = error | warning | info and is taken from the function name. Report
contains the actual log message, and Metadata contains additional
information which can be used for creating backwards compatible events for
legacy error_logger event handlers, see section
Legacy Event Handlers.

	Output Format - To get log events on the same format as produced by
error_logger_tty_h and error_logger_file_h, use the default formatter,
logger_formatter, with configuration parameter legacy_header set to
true. This is the default configuration of the default handler started by
Kernel.

	Default Format of Log Events from OTP - By default, all log events
originating from within OTP, except the former so called "SASL reports", look
the same as before.

	 SASL Reports
By SASL reports we mean supervisor reports, crash reports and progress
reports.
Prior to Erlang/OTP 21.0, these reports were only logged when the SASL
application was running, and they were printed through SASL's own event
handlers sasl_report_tty_h and sasl_report_file_h.
The destination of these log events was configured by
SASL configuration parameters.
Due to the specific event handlers, the output format slightly differed from
other log events.
As of Erlang/OTP 21.0, the concept of SASL reports is removed, meaning that
the default behaviour is as follows:
	Supervisor reports, crash reports, and progress reports are no longer
connected to the SASL application.
	Supervisor reports and crash reports are issued as error level log events,
and are logged through the default handler started by Kernel.
	Progress reports are issued as info level log events, and since the
default primary log level is notice, these are not logged by default. To
enable printing of progress reports, set the
primary log level to info.
	The output format is the same for all log events.

If the old behaviour is preferred, the Kernel configuration parameter
logger_sasl_compatible can be set to
true. The
SASL configuration parameters
can then be used as before, and the SASL reports will only be printed if the
SASL application is running, through a second log handler named sasl.
All SASL reports have a metadata field domain which is set to [otp,sasl].
This field can be used by filters to stop or allow the log events.
See section SASL User's Guide for more
information about the old SASL error logging functionality.

	 Legacy Event Handlers
To use event handlers written for error_logger, just add your event handler
with
error_logger:add_report_handler/1,2.
This automatically starts the error logger event manager, and adds
error_logger as a handler to Logger, with the following configuration:
#{level => info,
 filter_default => log,
 filters => []}.
Note
This handler ignores events that do not originate from the error_logger
API, or from within OTP. This means that if your code uses the Logger API
for logging, then your log events will be discarded by this handler.
The handler is not overload protected.

 Error Handling

Logger does, to a certain extent, check its input data before forwarding a log
event to filters and handlers. It does, however, not evaluate report callbacks,
or check the validity of format strings and arguments. This means that all
filters and handlers must be careful when formatting the data of a log event,
making sure that it does not crash due to bad input data or faulty callbacks.
If a filter or handler still crashes, Logger will remove the filter or handler
in question from the configuration, and print a short error message to the
terminal. A debug event containing the crash reason and other details is also
issued.
See section Log Message for more information
about report callbacks and valid forms of log messages.

 Example: Add a handler to log info events to file

When starting an Erlang node, the default behaviour is that all log events on
level notice or more severe, are logged to the terminal via the default
handler. To also log info events, you can either change the primary log level to
info:
1> logger:set_primary_config(level, info).
ok
or set the level for one or a few modules only:
2> logger:set_module_level(mymodule, info).
ok
This allows info events to pass through to the default handler, and be printed
to the terminal as well. If there are many info events, it can be useful to
print these to a file instead.
First, set the log level of the default handler to notice, preventing it from
printing info events to the terminal:
3> logger:set_handler_config(default, level, notice).
ok
Then, add a new handler which prints to file. You can use the handler module
logger_std_h, and configure it to log to file:
4> Config = #{config => #{file => "./info.log"}, level => info}.
#{config => #{file => "./info.log"},level => info}
5> logger:add_handler(myhandler, logger_std_h, Config).
ok
Since filter_default defaults to log, this handler now receives all log
events. If you want info events only in the file, you must add a filter to stop
all non-info events. The built-in filter logger_filters:level/2 can do this:
6> logger:add_handler_filter(myhandler, stop_non_info,
 {fun logger_filters:level/2, {stop, neq, info}}).
ok
See section Filters for more information about the
filters and the filter_default configuration parameter.

 Example: Implement a handler

logger_handler describes the callback functions that can be implemented for
a Logger handler.
A handler callback module must export:
	log(Log, Config)

It can optionally also export some, or all, of the following:
	adding_handler(Config)
	removing_handler(Config)
	changing_config(SetOrUpdate, OldConfig, NewConfig)
	filter_config(Config)

When a handler is added, by for example a call to
logger:add_handler(Id, HModule, Config), Logger
first calls HModule:adding_handler(Config). If this function returns
{ok,Config1}, Logger writes Config1 to the configuration database, and the
logger:add_handler/3 call returns. After this, the handler is installed and
must be ready to receive log events as calls to HModule:log/2.
A handler can be removed by calling
logger:remove_handler(Id). Logger calls
HModule:removing_handler(Config), and removes the handler's configuration from
the configuration database.
When logger:set_handler_config/2,3 or
logger:update_handler_config/2,3 is
called, Logger calls
HModule:changing_config(SetOrUpdate, OldConfig, NewConfig). If this function
returns {ok,NewConfig1}, Logger writes NewConfig1 to the configuration
database.
When logger:get_config/0 or
logger:get_handler_config/0,1 is called,
Logger calls HModule:filter_config(Config). This function must return the
handler configuration where internal data is removed.
A simple handler that prints to the terminal can be implemented as follows:
-module(myhandler1).
-export([log/2]).

log(LogEvent, #{formatter := {FModule, FConfig}}) ->
 io:put_chars(FModule:format(LogEvent, FConfig)).
Notice that the above handler does not have any overload protection, and all log
events are printed directly from the client process.
For information and examples of overload protection, please refer to section
Protecting the Handler from Overload,
and the implementation of logger_std_h and
logger_disk_log_h .
The following is a simpler example of a handler which logs to a file through one
single process:
-module(myhandler2).
-export([adding_handler/1, removing_handler/1, log/2]).
-export([init/1, handle_call/3, handle_cast/2, terminate/2]).

adding_handler(Config) ->
 MyConfig = maps:get(config,Config,#{file => "myhandler2.log"}),
 {ok, Pid} = gen_server:start(?MODULE, MyConfig, []),
 {ok, Config#{config => MyConfig#{pid => Pid}}}.

removing_handler(#{config := #{pid := Pid}}) ->
 gen_server:stop(Pid).

log(LogEvent,#{config := #{pid := Pid}} = Config) ->
 gen_server:cast(Pid, {log, LogEvent, Config}).

init(#{file := File}) ->
 {ok, Fd} = file:open(File, [append, {encoding, utf8}]),
 {ok, #{file => File, fd => Fd}}.

handle_call(_, _, State) ->
 {reply, {error, bad_request}, State}.

handle_cast({log, LogEvent, Config}, #{fd := Fd} = State) ->
 do_log(Fd, LogEvent, Config),
 {noreply, State}.

terminate(_Reason, #{fd := Fd}) ->
 _ = file:close(Fd),
 ok.

do_log(Fd, LogEvent, #{formatter := {FModule, FConfig}}) ->
 String = FModule:format(LogEvent, FConfig),
 io:put_chars(Fd, String).

 Protecting the Handler from Overload

The default handlers, logger_std_h and logger_disk_log_h, feature an
overload protection mechanism, which makes it possible for the handlers to
survive, and stay responsive, during periods of high load (when huge numbers of
incoming log requests must be handled). The mechanism works as follows:

 Message Queue Length

The handler process keeps track of the length of its message queue and takes
some form of action when the current length exceeds a configurable threshold.
The purpose is to keep the handler in, or to as quickly as possible get the
handler into, a state where it can keep up with the pace of incoming log events.
The memory use of the handler must never grow larger and larger, since that will
eventually cause the handler to crash. These three thresholds, with associated
actions, exist:
	sync_mode_qlen - As long as the length of the message queue is lower
than this value, all log events are handled asynchronously. This means that
the client process sending the log event, by calling a log function in the
Logger API, does not wait for a response from
the handler but continues executing immediately after the event is sent. It is
not affected by the time it takes the handler to print the event to the log
device. If the message queue grows larger than this value, the handler starts
handling log events synchronously instead, meaning that the client process
sending the event must wait for a response. When the handler reduces the
message queue to a level below the sync_mode_qlen threshold, asynchronous
operation is resumed. The switch from asynchronous to synchronous mode can
slow down the logging tempo of one, or a few, busy senders, but cannot protect
the handler sufficiently in a situation of many busy concurrent senders.
Defaults to 10 messages.

	drop_mode_qlen - When the message queue grows larger than this
threshold, the handler switches to a mode in which it drops all new events
that senders want to log. Dropping an event in this mode means that the call
to the log function never results in a message being sent to the handler, but
the function returns without taking any action. The handler keeps logging the
events that are already in its message queue, and when the length of the
message queue is reduced to a level below the threshold, synchronous or
asynchronous mode is resumed. Notice that when the handler activates or
deactivates drop mode, information about it is printed in the log.
Defaults to 200 messages.

	flush_qlen - If the length of the message queue grows larger than this
threshold, a flush (delete) operation takes place. To flush events, the
handler discards the messages in the message queue by receiving them in a loop
without logging. Client processes waiting for a response from a synchronous
log request receive a reply from the handler indicating that the request is
dropped. The handler process increases its priority during the flush loop to
make sure that no new events are received during the operation. Notice that
after the flush operation is performed, the handler prints information in the
log about how many events have been deleted.
Defaults to 1000 messages.

For the overload protection algorithm to work properly, it is required that:
sync_mode_qlen =< drop_mode_qlen =< flush_qlen
and that:
drop_mode_qlen > 1
To disable certain modes, do the following:
	If sync_mode_qlen is set to 0, all log events are handled synchronously.
That is, asynchronous logging is disabled.
	If sync_mode_qlen is set to the same value as drop_mode_qlen, synchronous
mode is disabled. That is, the handler always runs in asynchronous mode,
unless dropping or flushing is invoked.
	If drop_mode_qlen is set to the same value as flush_qlen, drop mode is
disabled and can never occur.

During high load scenarios, the length of the handler message queue rarely grows
in a linear and predictable way. Instead, whenever the handler process is
scheduled in, it can have an almost arbitrary number of messages waiting in the
message queue. It is for this reason that the overload protection mechanism is
focused on acting quickly, and quite drastically, such as immediately dropping
or flushing messages, when a large queue length is detected.
The values of the previously listed thresholds can be specified by the user.
This way, a handler can be configured to, for example, not drop or flush
messages unless the message queue length of the handler process grows extremely
large. Notice that large amounts of memory can be required for the node under
such circumstances. Another example of user configuration is when, for
performance reasons, the client processes must never be blocked by synchronous
log requests. It is possible, perhaps, that dropping or flushing events is still
acceptable, since it does not affect the performance of the client processes
sending the log events.
A configuration example:
logger:add_handler(my_standard_h, logger_std_h,
 #{config => #{file => "./system_info.log",
 sync_mode_qlen => 100,
 drop_mode_qlen => 1000,
 flush_qlen => 2000}}).

 Controlling Bursts of Log Requests

Large bursts of log events - many events received by the handler under a short
period of time - can potentially cause problems, such as:
	Log files grow very large, very quickly.
	Circular logs wrap too quickly so that important data is overwritten.
	Write buffers grow large, which slows down file sync operations.

For this reason, both built-in handlers offer the possibility to specify the
maximum number of events to be handled within a certain time frame. With this
burst control feature enabled, the handler can avoid choking the log with
massive amounts of printouts. The configuration parameters are:
	burst_limit_enable - Value true enables burst control and false
disables it.
Defaults to true.

	burst_limit_max_count - This is the maximum number of events to handle
within a burst_limit_window_time time frame. After the limit is reached,
successive events are dropped until the end of the time frame.
Defaults to 500 events.

	burst_limit_window_time - See the previous description of
burst_limit_max_count.
Defaults to 1000 milliseconds.

A configuration example:
logger:add_handler(my_disk_log_h, logger_disk_log_h,
 #{config => #{file => "./my_disk_log",
 burst_limit_enable => true,
 burst_limit_max_count => 20,
 burst_limit_window_time => 500}}).

 Terminating an Overloaded Handler

It is possible that a handler, even if it can successfully manage peaks of high
load without crashing, can build up a large message queue, or use a large amount
of memory. The overload protection mechanism includes an automatic termination
and restart feature for the purpose of guaranteeing that a handler does not grow
out of bounds. The feature is configured with the following parameters:
	overload_kill_enable - Value true enables the feature and false
disables it.
Defaults to false.

	overload_kill_qlen - This is the maximum allowed queue length. If the
message queue grows larger than this, the handler process is terminated.
Defaults to 20000 messages.

	overload_kill_mem_size - This is the maximum memory size that the
handler process is allowed to use. If the handler grows larger than this, the
process is terminated.
Defaults to 3000000 bytes.

	overload_kill_restart_after - If the handler is terminated, it restarts
automatically after a delay specified in milliseconds. The value infinity
prevents restarts.
Defaults to 5000 milliseconds.

If the handler process is terminated because of overload, it prints information
about it in the log. It also prints information about when a restart has taken
place, and the handler is back in action.
Note
The sizes of the log events affect the memory needs of the handler. For
information about how to limit the size of log events, see the
logger_formatter manual page.

 Logger Proxy

The Logger proxy is an Erlang process which is part of the Kernel application's
supervision tree. During startup, the proxy process registers itself as the
system_logger, meaning that log events produced by the emulator are sent to
this process.
When a log event is issued on a process which has its group leader on a remote
node, Logger automatically forwards the log event to the group leader's node. To
achieve this, it first sends the log event as an Erlang message from the
original client process to the proxy on the local node, and the proxy in turn
forwards the event to the proxy on the remote node.
When receiving a log event, either from the emulator or from a remote node, the
proxy calls the Logger API to log the event.
The proxy process is overload protected in the same way as described in section
Protecting the Handler from Overload,
but with the following default values:
 #{sync_mode_qlen => 500,
 drop_mode_qlen => 1000,
 flush_qlen => 5000,
 burst_limit_enable => false,
 overload_kill_enable => false}
For log events from the emulator, synchronous message passing mode is not
applicable, since all messages are passed asynchronously by the emulator. Drop
mode is achieved by setting the system_logger to undefined, forcing the
emulator to drop events until it is set back to the proxy pid again.
The proxy uses erlang:send_nosuspend/2 when sending log events to a remote
node. If the message could not be sent without suspending the sender, it is
dropped. This is to avoid blocking the proxy process.

 See Also

disk_log, erlang, error_logger, logger, logger_disk_log_h,
logger_filters, logger_formatter, logger_std_h,
sasl(6)

Logging Cookbook

Using and especially configuring Logger can be difficult at times as there are
many different options that can be changed and often more than one way to
achieve the same result. This User's Guide tries to help by giving many
different examples of how you can use logger.
For more examples of practical use-cases of using Logger, Fred Hebert's blog
post
Erlang/OTP 21's new logger is
a great starting point.
Note
If you find that some common Logger usage is missing from this guide, please
open a pull request on github with the suggested addition

 Get Logger information

 Print the primary Logger configurations.

1> logger:i(primary).
Primary configuration:
 Level: notice
 Filter Default: log
 Filters:
 (none)
It is also possible to fetch the configuration using
logger:get_primary_config().
See also
	logger:i()
	Configuration in the Logging User's Guide

 Print the configuration of all handlers.

2> logger:i(handlers).
Handler configuration:
 Id: default
 Module: logger_std_h
 Level: all
 Formatter:
 Module: logger_formatter
 Config:
 legacy_header: true
 single_line: false
 Filter Default: stop
 Filters:
 Id: remote_gl
 Fun: fun logger_filters:remote_gl/2
 Arg: stop
 Id: domain
 Fun: fun logger_filters:domain/2
 Arg: {log,super,[otp,sasl]}
 Id: no_domain
 Fun: fun logger_filters:domain/2
 Arg: {log,undefined,[]}
 Handler Config:
 burst_limit_enable: true
 burst_limit_max_count: 500
 burst_limit_window_time: 1000
 drop_mode_qlen: 200
 filesync_repeat_interval: no_repeat
 flush_qlen: 1000
 overload_kill_enable: false
 overload_kill_mem_size: 3000000
 overload_kill_qlen: 20000
 overload_kill_restart_after: 5000
 sync_mode_qlen: 10
 type: standard_io
You can also print the configuration of a specific handler using
logger:i(HandlerName), or fetch the configuration using
logger:get_handler_config(), or
logger:get_handler_config(HandlerName) for a
specific handler.
See also
	logger:i()
	Configuration in the Logging User's Guide

 Configure the Logger

 Where did my progress reports go?

In OTP-21 the default primary log level is notice. The means that many log
messages are by default not printed. This includes the progress reports of
supervisors. In order to get progress reports you need to raise the primary log
level to info
$ erl -kernel logger_level info
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.742069 ===
 application: kernel
 started_at: nonode@nohost
=PROGRESS REPORT==== 4-Nov-2019::16:33:11.746546 ===
 application: stdlib
 started_at: nonode@nohost
Eshell V10.5.3 (abort with ^G)
1>

 Configure Logger formatter

In order to fit better into your existing logging infrastructure Logger can
format its logging messages any way you want to. Either you can use the built-in
formatter, or you can build your own.

 Single line configuration

Since single line logging is the default of the built-in formatter you only have
to provide the empty map as the configuration. The example below uses the
sys.config to change the formatter configuration.
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter, #{ }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, an error").
1962-10-03T11:07:47.466763-04:00 error: Oh noes, an error
However, if you just want to change it for the current session you can also do
that.
1> logger:set_handler_config(default, formatter, {logger_formatter, #{}}).
ok
2> logger:error("Oh noes, another error").
1962-10-04T15:34:02.648713-04:00 error: Oh noes, another error
See also
	logger_formatter's Configuration
	Formatters in the Logging User's Guide
	logger:set_handler_config/3

 Add file and line number to log entries

You can change what is printed to the log by using the formatter template:
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ formatter => {logger_formatter,
 #{ template => [time," ", file,":",line," ",level,": ",msg,"\n"] }}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, more errors",#{ file => "shell.erl", line => 1 }).
1962-10-05T07:37:44.104241+02:00 shell.erl:1 error: Oh noes, more errors
Note that file and line have to be added in the metadata by the caller of
logger:log/3 as otherwise Logger will not know from where it was called. The
file and line number are automatically added if you use the ?LOG_ERROR macros
in kernel/include/logger.hrl.
See also
	logger_formatter's Configuration
	logger_formatter's Template
	Logger Macros
	Metadata in the Logging User's Guide

 Configuring handlers

 Print logs to a file

Instead of printing the logs to stdout we print them to a rotating file log.
$ cat sys.config
[{kernel,
 [{logger,
 [{handler, default, logger_std_h,
 #{ config => #{ file => "log/erlang.log",
 max_no_bytes => 4096,
 max_no_files => 5},
 formatter => {logger_formatter, #{}}}}]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
ok
2> erlang:halt().
$ cat log/erlang.log
2019-10-07T11:47:16.837958+02:00 error: Oh noes, even more errors
See also
	logger_std_h
	Handlers in the Logging User's Guide

 Debug only handler

Add a handler that prints debug log events to a file, while the default
handler prints only up to notice level events to standard out.
$ cat sys.config
[{kernel,
 [{logger_level, all},
 {logger,
 [{handler, default, logger_std_h,
 #{ level => notice }},
 {handler, debug, logger_std_h,
 #{ filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }}
]}]}].
$ erl -config sys
Eshell V10.5.1 (abort with ^G)
1> logger:error("Oh noes, even more errors").
=ERROR REPORT==== 9-Oct-2019::14:40:54.784162 ===
Oh noes, even more errors
ok
2> logger:debug("A debug event").
ok
3> erlang:halt().
$ cat log/debug.log
2019-10-09T14:41:03.680541+02:00 debug: A debug event
In the configuration above we first raise the primary log level to max in order
for the debug log events to get to the handlers. Then we configure the default
handler to only log notice and below events, the default log level for a handler
is all. Then the debug handler is configured with a filter to stop any log
message that is not a debug level message.
It is also possible to do the same changes in an already running system using
the logger module. Then you do like this:
$ erl
1> logger:set_handler_config(default, level, notice).
ok
2> logger:add_handler(debug, logger_std_h, #{
 filters => [{debug,{fun logger_filters:level/2, {stop, neq, debug}}}],
 config => #{ file => "log/debug.log" } }).
ok
3> logger:set_primary_config(level, all).
ok
It is important that you do not raise the primary log level before adjusting the
default handler's level as otherwise your standard out may be flooded by debug
log messages.
See also
	logger_std_h
	Filters in the Logging User's Guide

 Logging

 What to log and how

The simplest way to log something is by using the Logger macros and give a
report to the macro. For example if you want to log an error:
?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP }).
This will print the following in the default log:
=ERROR REPORT==== 10-Oct-2019::12:13:10.089073 ===
 dst: {8,8,4,4}
 src: {8,8,8,8}
 status: 418
 what: http_error
or the below if you use a single line formatter:
2019-10-10T12:14:11.921843+02:00 error: dst: {8,8,4,4}, src: {8,8,8,8}, status: 418, what: http_error
See also
	Log Message in the Logging User's Guide

 Report call-backs and printing of events

If you want to do structured logging, but still want to have some control of how
the final log message is formatted you can give a report_cb as part of the
metadata with your log event.
ReportCB = fun(#{ what := What, status := Status, src := Src, dst := Dst }) ->
 {ok, #hostent{ h_name = SrcName }} = inet:gethostbyaddr(Src),
 {ok, #hostent{ h_name = DstName }} = inet:gethostbyaddr(Dst),
 {"What: ~p~nStatus: ~p~nSrc: ~s (~s)~nDst: ~s (~s)~n",
 [What, Status, inet:ntoa(Src), SrcName, inet:ntoa(Dst), DstName]}
 end,
?LOG_ERROR(#{ what => http_error, status => 418, src => ClientIP, dst => ServerIP },
 #{ report_cb => ReportCB }).
This will print the following:
=ERROR REPORT==== 10-Oct-2019::13:29:02.230863 ===
What: http_error
Status: 418
Src: 8.8.8.8 (dns.google)
Dst: 192.121.151.106 (erlang.org)
Note that the order that things are printed have changed, and also I added a
reverse-dns lookup of the IP address. This will not print as nicely when using a
single line formatter, however you can also use a report_cb fun with 2 arguments
where the second argument is the formatting options.
See also
	Log Message in the Logging User's Guide
	Logger Report Callbacks

 Filters

Filters are used to remove or change log events before they reach the handlers.

 Process filters

If we only want debug messages from a specific process it is possible to do this
with a filter like this:
%% Initial setup to use a filter for the level filter instead of the primary level
PrimaryLevel = maps:get(level, logger:get_primary_config()),
ok = logger:add_primary_filter(primary_level,
 {fun logger_filters:level/2, {log, gteq, PrimaryLevel}}),
logger:set_primary_config(filter_default, stop),
logger:set_primary_config(level, all),

%% Test that things work as they should
logger:notice("Notice should be logged"),
logger:debug("Should not be logged"),

%% Add the filter to allow PidToLog to send debug events
PidToLog = self(),
PidFilter = fun(LogEvent, _) when PidToLog =:= self() -> LogEvent;
 (_LogEvent, _) -> ignore end,
ok = logger:add_primary_filter(pid, {PidFilter,[]}),
logger:debug("Debug should be logged").
There is a bit of setup needed to allow filters to decide whether a specific
process should be allowed to log. This is because the default primary log level
is notice and it is enforced before the primary filters. So in order for the pid
filter to be useful we have to raise the primary log level to all and then add
a level filter that only lets certain messages at or greater than notice
through. When the setup is done, it is simple to add a filter that allows a
certain pid through.
Note that doing the primary log level filtering through a filter and not through
the level is quite a lot more expensive, so make sure to test that your system
can handle the extra load before you enable it on a production node.
See also
	Filters in the Logging User's Guide
	logger_filters:level/2
	logger:set_primary_config/2

 Domains

Domains are used to specify which subsystem a certain log event originates from.
The default handler will by default only log events with the domain [otp] or
without a domain. If you would like to include SSL log events into the default
handler log you could do this:
1> logger:add_handler_filter(default,ssl_domain,
 {fun logger_filters:domain/2,{log,sub,[otp,ssl]}}).
2> application:ensure_all_started(ssl).
{ok,[crypto,asn1,public_key,ssl]}
3> ssl:connect("www.erlang.org",443,[{log_level,debug}]).
%% lots of text
See also
	Filters in the Logging User's Guide
	logger_filters:domain/2
	logger:set_primary_config/2

EEP-48: Documentation storage and format

This User's Guide describes the documentation storage format initially described
in EEP-48.
By standardizing how API documentation is stored, it will be possible to write
tools that work across languages.
To fetch the EEP-48 documentation for a module, use code:get_doc/1.
To render the EEP-48 documentation for an Erlang module, use
shell_docs:render/2.

 The "Docs" storage

To look for documentation for a module named example, a tool should:
Look for example.beam in the code path, parse the BEAM file, and retrieve the
Docs chunk. If the chunk is not available, it should look for "example.beam"
in the code path and find the doc/chunks/example.chunk file in the application
that defines the example module. If no .chunk file exists,
documentation is not available.
The choice of using a chunk or the filesystem is completely up to the language
or library. In both cases, the documentation can be added or removed at any
moment by stripping the Docs chunk (using beam_lib) or by removing the
doc/chunks directory.
For example, languages such as Elixir and LFE attach the Docs chunk at
compilation time, which can be controlled via a compiler flag, while
other languages might want to generate the documentation separate from
the compilation of the source code.

 The "Docs" format

In both storages, the documentation is written in the exactly same format: an
Erlang term serialized to binary via
term_to_binary/1. The term can be optionally
compressed when serialized. It must follow the type specification below:
{docs_v1,
 Anno :: erl_anno:anno(),
 BeamLanguage :: atom(),
 Format :: binary(),
 ModuleDoc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map(),
 Docs ::
 [{{Kind, Name, Arity},
 Anno :: erl_anno:anno(),
 Signature :: [binary()],
 Doc :: #{DocLanguage := DocValue} | none | hidden,
 Metadata :: map()
 }]} when DocLanguage :: binary(),
 DocValue :: binary() | term()
where in the root tuple we have:
	Anno - annotation (line, column, file) of the definition itself (see
erl_anno)

	BeamLanguage - an atom representing the language, for example: erlang,
elixir, lfe, alpaca, and so on

	Format - the mime type of the documentation, such as <<"text/markdown">>
or <<"application/erlang+html">>. For details of the format used by Erlang
see the EEP-48 Chapter in EDoc's User's
Guide.

	ModuleDoc - a map with the documentation language as key, such as
<<"en">> or <<"pt_BR">>, and the documentation as a binary value. It can
be atom none if no documentation exists or the atom hidden if
documentation has been explicitly disabled for this entry.

	Metadata - a map of atom keys with any term as value. This can be used to
add annotations like the authors of a module, deprecated, or anything else
a language or documentation tool finds relevant.

	Docs - a list of documentation for other entities (such as functions and
types) in the module.

For each entry in Docs, we have:
	{Kind, Name, Arity} - the kind, name and arity identifying the function,
callback, type, and so on. The official entities are: function, type, and
callback. Other languages will add their own. For instance, Elixir and LFE
might add macro.

	Anno - annotation (line, column, file) of the module documentation or of
the definition itself (see erl_anno).

	Signature - the signature of the entity. It is is a list of binaries.
Each entry represents a binary in the signature that can be joined with
whitespace or newline. For example,
[<<"binary_to_atom(Binary, Encoding)">>, <<"when is_binary(Binary)">>] can
be rendered as a single line or two lines. It exists exclusively for
exhibition purposes.

	Doc - a map with the documentation language as key, such as <<"en">> or
<<"pt_BR">>, and the documentation as a value. The documentation can either be
a binary or any Erlang term, both described by Format. If it is an Erlang
term, then Format must be <<"application/erlang+SUFFIX">>, such as
<<"application/erlang+html">> when the documentation is an Erlang
representation of an HTML document. Doc can also be atom none
if no documentation exists or the atom hidden if documentation has been
explicitly disabled for this entry.

	Metadata - a map of atom keys with any term as value.

This shared format is the heart of the EEP as it is what effectively allows
cross-language collaboration.
The Metadata field exists to allow languages, tools, and libraries to add custom
information to each entry. This EEP documents the following metadata keys:
	authors := [binary()] - a list of authors as binaries.

	cross_references := [module() | {module(), {Kind, Name, Arity}}] - a
list of modules or module entries that can be used as cross references when
generating documentation.

	deprecated := binary() - when present, it means the current entry is
deprecated with a binary that represents the reason for deprecation and a
recommendation to replace the deprecated code.

	since := binary() - a binary representing the version such entry was
added, such as <<"1.3.0">> or <<"20.0">>.

	edit_url := binary() - a binary representing a URL to change the
documentation itself.

Any key may be added to Metadata at any time. Keys that are frequently used by
the community can be standardized in future versions.

 See Also

erl_anno, shell_docs,
EEP-48 Chapter in EDoc's User's Guide,
code:get_doc/1

app

Application resource file.

 Description

The application resource file specifies the resources an application uses, and
how the application is started. There must always be one application resource
file called Application.app for each application Application in the system.
The file is read by the application controller when an application is
loaded/started. It is also used by the functions in systools, for example when
generating start scripts.

 File Syntax

The application resource file is to be called Application.app, where
Application is the application name. The file is to be located in directory
ebin for the application.
The file must contain a single Erlang term, which is called an application
specification:
{application, Application,
 [{description, Description},
 {id, Id},
 {vsn, Vsn},
 {modules, Modules},
 {maxP, MaxP},
 {maxT, MaxT},
 {registered, Names},
 {included_applications, Apps},
 {optional_applications, Apps},
 {applications, Apps},
 {env, Env},
 {mod, Start},
 {start_phases, Phases},
 {runtime_dependencies, RTDeps}]}.

 Value Default
 ----- -------
Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} []
Phases [{Phase,PhaseArgs}] undefined
RTDeps [ApplicationVersion] []

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()
ApplicationVersion = string()
	Application - Application name.

For the application controller, all keys are optional. The respective default
values are used for any omitted keys.
The functions in systools require more information. If they are used, the
following keys are mandatory:
	description
	vsn
	modules
	registered
	applications

The other keys are ignored by systools.
	description - A one-line description of the application.

	id - Product identification, or similar.

	vsn - Version of the application.

	modules - All modules introduced by this application. systools uses
this list when generating start scripts and tar files. A module can only be
defined in one application.

	maxP - Deprecated - is ignored
Maximum number of processes allowed in the application.

	maxT - Maximum time, in milliseconds, that the application is allowed to
run. After the specified time, the application terminates automatically.

	registered - All names of registered processes started in this
application. systools uses this list to detect name clashes between
different applications.

	included_applications - All applications included by this application.
When this application is started, all included applications are loaded
automatically, but not started, by the application controller. It is assumed
that the top-most supervisor of the included application is started by a
supervisor of this application.

	applications - All applications that must be started before this
application. If an application is also listed in optional_applications, then
the application is not required to exist (but if it exists, it is also
guaranteed to be started before this one).
systools uses this list to generate correct start scripts. Defaults to the
empty list, but notice that all applications have dependencies to (at least)
Kernel and STDLIB.

	optional_applications - A list of applications that are optional. Note
if you want an optional dependency to be automatically started before the
current application whenever it is available, it must be listed on both
applications and optional_applications.

	env - Configuration parameters used by the application. The value of a
configuration parameter is retrieved by calling application:get_env/1,2. The
values in the application resource file can be overridden by values in a
configuration file (see config(4)) or by command-line flags
(see erts:erl(1)).

	mod - Specifies the application callback module and a start argument,
see application.
Key mod is necessary for an application implemented as a supervision tree,
otherwise the application controller does not know how to start it. mod can
be omitted for applications without processes, typically code libraries, for
example, STDLIB.

	start_phases - A list of start phases and corresponding start arguments
for the application. If this key is present, the application master, in
addition to the usual call to Module:start/2, also calls
Module:start_phase(Phase,Type,PhaseArgs) for each start phase defined by key
start_phases. Only after this extended start procedure,
application:start(Application) returns.
Start phases can be used to synchronize startup of an application and its
included applications. In this case, key mod must be specified as follows:
{mod, {application_starter,[Module,StartArgs]}}
The application master then calls Module:start/2 for the primary
application, followed by calls to Module:start_phase/3 for each start phase
(as defined for the primary application), both for the primary application and
for each of its included applications, for which the start phase is defined.
This implies that for an included application, the set of start phases must be
a subset of the set of phases defined for the primary application. For more
information, see OTP Design Principles.

	runtime_dependencies - A list of application
versions that the application depends on. An example of such an application
version is "kernel-3.0". Application versions specified as runtime
dependencies are minimum requirements. That is, a larger application version
than the one specified in the dependency satisfies the requirement. For
information about how to compare application versions, see section
Versions in the System Principles User's Guide.
Notice that the application version specifies a source code version. One more,
indirect, requirement is that the installed binary application of the
specified version is built so that it is compatible with the rest of the
system.
Some dependencies can only be required in specific runtime scenarios. When
such optional dependencies exist, these are specified and documented in the
corresponding "App" documentation of the specific application.

 See Also

application, systools

config

Configuration file.

 Description

A configuration file contains values for configuration parameters for the
applications in the system. The erl command-line argument
-config Name tells the system to use data in the
system configuration file Name.config.
The erl command-line argument -configfd works
the same way as the -config option but specifies a file descriptor to read
configuration data from instead of a file.
The configuration data from configuration files and file descriptors are read in
the same order as they are given on the command line. For example,
erl -config a -configfd 3 -config b -configfd 4 would cause the system to read
configuration data in the following order a.config, file descriptor 3,
b.config, and file descriptor 4. If a configuration parameter is specified
more than once in the given files and file descriptors, the last one overrides
the previous ones.
Configuration parameter values in a configuration file or file descriptor
override the values in the application resource files (see app(4)).
The values in the configuration file are always overridden by command-line flags
(see erts:erl(1)).
The value of a configuration parameter is retrieved by calling
application:get_env/1,2.

 File Syntax

The configuration file is to be called Name.config, where Name is any name.
File .config contains a single Erlang term and has the following syntax:
[{Application1, [{Par11, Val11}, ...]},
 ...
 {ApplicationN, [{ParN1, ValN1}, ...]}].
	Application = atom() - Application name.

	Par = atom() - Name of a configuration parameter.

	Val = term() - Value of a configuration parameter.

 sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system
configuration file is used, named sys.config. This file is to be located in
$ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root installation
directory and Vsn is the release version.
Release handling relies on this assumption. When installing a new release
version, the new sys.config is read and used to update the application's
configurations.
This means that specifying another .config file, or more .config files,
leads to an inconsistent update of application configurations. There is,
however, a way to point out other config files from a sys.config. How to do
this is described in the next section.

 Including Files from sys.config and -configfd Configurations

There is a way to include other configuration files from a sys.config file and
from a configuration that comes from a file descriptor that has been pointed out
with the -configfd command-line argument.
The syntax for including files can be described by the
Erlang type language like this:
[{Application, [{Par, Val}]} | IncludeFile].
	IncludeFile = string() - Name of a .config file. The extension
.config can be omitted. It is recommended to use absolute paths. If a
relative path is used in a sys.config, IncludeFile is searched, first,
relative to the sys.config directory, then relative to the current working
directory of the emulator. If a relative path is used in a -configfd
configuration, IncludeFile is searched, first, relative to the dictionary
containing the boot script (see also the
-boot command-line argument) for the emulator,
then relative to the current working directory of the emulator. This makes it
possible to use sys.config for pointing out other .config files in a
release or in a node started manually using -config or -configfd with the
same result whatever the current working directory is.

When traversing the contents of a sys.config or a -configfd configuration
and a filename is encountered, its contents are read and merged with the result
so far. When an application configuration tuple {Application, Env} is found,
it is merged with the result so far. Merging means that new parameters are added
and existing parameter values are overwritten.
Example:
sys.config:

["/home/user/myconfig1"
 {myapp,[{par1,val1},{par2,val2}]},
 "/home/user/myconfig2"].

myconfig1.config:

[{myapp,[{par0,val0},{par1,val0},{par2,val0}]}].

myconfig2.config:

[{myapp,[{par2,val3},{par3,val4}]}].
This yields the following environment for myapp:
[{par0,val0},{par1,val1},{par2,val3},{par3,val4}]
The run-time system will abort before staring up if an include file specified in
sys.config or a -configfd configuration does not exist, or is erroneous.
However, installing a new release version will not fail if there is an error
while loading an include file, but an error message is returned and the
erroneous file is ignored.

 See Also

app(4), erts:erl(1),
OTP Design Principles

application behaviour

Generic OTP application functions
In OTP, application denotes a component implementing some specific
functionality, that can be started and stopped as a unit, and that can be reused
in other systems. This module interacts with application controller, a process
started at every Erlang runtime system. This module contains functions for
controlling applications (for example, starting and stopping applications), and
functions to access information about applications (for example, configuration
parameters).
An application is defined by an application specification. The specification
is normally located in an application resource file named Application.app,
where Application is the application name. For details about the application
specification, see app.
This module can also be viewed as a behaviour for an application implemented
according to the OTP design principles as a supervision tree. The definition of
how to start and stop the tree is to be located in an application callback
module, exporting a predefined set of functions.
For details about applications and behaviours, see
OTP Design Principles.

 See Also

OTP Design Principles,
kernel, app

 Summary

 Types

 code - kernel v10.2

code

Interface to the Erlang code server process.
This module contains the interface to the Erlang code server, which deals with
the loading of compiled code into a running Erlang runtime system.
The runtime system can be started in interactive or embedded mode. Which one
is decided by the command-line flag -mode:
% erl -mode embedded

The modes are as follows:
	In interactive mode, which is default, only the modules needed by
the runtime system are loaded during system startup. Other code is
dynamically loaded when first referenced. When a call to a function
in a certain module is made, and that module is not loaded, the code
server searches for and tries to load that module.

	In embedded mode, modules are not auto-loaded. Trying to use a
module that has not been loaded results in an error. This mode is
recommended when the boot script loads all modules, as it is
typically done in OTP releases. (Code can still be loaded later by
explicitly ordering the code server to do so).

To prevent accidentally reloading of modules affecting the Erlang runtime
system, directories kernel, stdlib, and compiler are considered sticky.
This means that the system issues a warning and rejects the request if a user
tries to reload a module residing in any of them. The feature can be disabled by
using command-line flag -nostick.

 Code Path

In interactive mode, the code server maintains a code path,
consisting of a list of directories, which it searches sequentially
when trying to load a module.
Initially, the code path consists of the current working directory and all
Erlang object code directories under library directory $OTPROOT/lib, where
$OTPROOT is the installation directory of Erlang/OTP, code:root_dir().
Directories can be named Name[-Vsn] and the code server, by default, chooses
the directory with the highest version number among those having the same
Name. Suffix -Vsn is optional. If an ebin directory exists under
Name[-Vsn], this directory is added to the code path.
Environment variable ERL_LIBS (defined in the operating system) can be used to
define more library directories to be handled in the same way as the standard
OTP library directory described above, except that directories without an ebin
directory are ignored.
All application directories found in the additional directories appear before
the standard OTP applications, except for the Kernel and STDLIB applications,
which are placed before any additional applications. In other words, modules
found in any of the additional library directories override modules with the
same name in OTP, except for modules in Kernel and STDLIB.
Environment variable ERL_LIBS (if defined) is to contain a colon-separated
(for Unix-like systems) or semicolon-separated (for Windows) list of additional
libraries.
Example:
On a Unix-like system, ERL_LIBS can be set to the following:
/usr/local/jungerl:/home/some_user/my_erlang_lib
The code paths specified by $OTPROOT, ERL_LIBS, and boot scripts have their
listings cached by default (except for ".") The code server will
lookup the contents in their directories once and avoid future file system
traversals. Therefore, modules added to such directories after the Erlang VM
boots will not be picked up. This behaviour can be disabled by setting
-cache_boot_paths false or by calling code:set_path(code:get_path()).
Change
The support for caching directories in the code path was added
in Erlang/OTP 26.

Directories given by the command line options -pa and -pz are not
cached by default. Many of the functions that manipulate the code path
accept the cache atom as an optional argument to enable caching
selectively.

 Loading of Code From Archive Files

Change
The existing experimental support for archive files will be changed
in a future release. As of Erlang/OTP 27, the function code:lib_dir/2,
the -code_path_choice flag, and using erl_prim_loader for
reading files from an archive are deprecated.
escript scripts that use archive files should use
escript:extract/2 to read data files from its archive instead of using
code:lib_dir/2 and erl_prim_loader.

The Erlang archives are ZIP files with extension .ez. Erlang archives can
also be enclosed in escript files whose file extension is arbitrary.
Erlang archive files can contain entire Erlang applications or parts of
applications. The structure in an archive file is the same as the directory
structure for an application. If you, for example, create an archive of
mnesia-4.4.7, the archive file must be named mnesia-4.4.7.ez and it must
contain a top directory named mnesia-4.4.7. If the version part of the name is
omitted, it must also be omitted in the archive. That is, a mnesia.ez archive
must contain a mnesia top directory.
An archive file for an application can, for example, be created like this:
zip:create("mnesia-4.4.7.ez",
	["mnesia-4.4.7"],
	[{cwd, code:lib_dir()},
	 {compress, all},
	 {uncompress,[".beam",".app"]}]).
Any file in the archive can be compressed, but to speed up the access of
frequently read files, it can be a good idea to store beam and app files
uncompressed in the archive.
Normally the top directory of an application is located in library directory
$OTPROOT/lib or in a directory referred to by environment variable ERL_LIBS.
At startup, when the initial code path is computed, the code server also looks
for archive files in these directories and possibly adds ebin directories in
archives to the code path. The code path then contains paths to directories that
look like $OTPROOT/lib/mnesia.ez/mnesia/ebin or
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.
The code server uses module erl_prim_loader in ERTS (possibly through
erl_boot_server) to read code files from archives. However, the functions in
erl_prim_loader can also be used by other applications to read files from
archives. For example, the call
erl_prim_loader:list_dir("/otp/root/lib/mnesia-4.4.7.ez/mnesia-4.4.7/examples/bench)"
would list the contents of a directory inside an archive. See
erl_prim_loader.
An application archive file and a regular application directory can coexist.
This can be useful when it is needed to have parts of the application as regular
files. A typical case is the priv directory, which must reside as a regular
directory to link in drivers dynamically and start port programs. For other
applications that do not need this, directory priv can reside in the archive
and the files under the directory priv can be read through erl_prim_loader.
When a directory is added to the code path and when the entire code path is
(re)set, the code server decides which subdirectories in an application that are
to be read from the archive and which that are to be read as regular files. If
directories are added or removed afterwards, the file access can fail if the
code path is not updated (possibly to the same path as before, to trigger the
directory resolution update).
For each directory on the second level in the application archive (ebin,
priv, src, and so on), the code server first chooses the regular directory
if it exists and second from the archive. Function code:lib_dir/2 returns the
path to the subdirectory. For example, code:lib_dir(megaco, ebin) can return
/otp/root/lib/megaco-3.9.1.1.ez/megaco-3.9.1.1/ebin while
code:lib_dir(megaco, priv) can return /otp/root/lib/megaco-3.9.1.1/priv.
When an escript file contains an archive, there are no restrictions on the
name of the escript and no restrictions on how many applications that can be
stored in the embedded archive. Single Beam files can also reside on the top
level in the archive. At startup, the top directory in the embedded archive and
all (second level) ebin directories in the embedded archive are added to the
code path. See escript.
A future-proof way for escript scripts to read data files from the archive is
to use the escript:extract/2 function.
When the choice of directories in the code path is strict (which is
the default as of Erlang/OTP 27), the directory that ends up in the
code path is exactly the stated one. This means that if, for example,
the directory $OTPROOT/lib/mnesia-4.4.7/ebin is explicitly added to
the code path, the code server does not load files from
$OTPROOT/lib/mnesia-4.4.7.ez/mnesia-4.4.7/ebin.
This behavior can be controlled through command-line flag
-code_path_choice Choice. If the flag is set to relaxed, the code server
instead chooses a suitable directory depending on the actual file structure. If
a regular application ebin directory exists, it is chosen. Otherwise, the
directory ebin in the archive is chosen if it exists. If neither of them
exists, the original directory is chosen.
Command-line flag -code_path_choice Choice also affects how module init
interprets the boot script. The interpretation of the explicit code paths in
the boot script can be strict or relaxed. It is particularly useful to set
the flag to relaxed when elaborating with code loading from archives without
editing the boot script. The default has changed to strict in OTP 27 and the
option is scheduled for removal in OTP 28. See module init in the
Erts application.

 Current and Old Code

The code for a module can exist in two variants in a system: current code and
old code. When a module is loaded into the system for the first time, the
module code becomes current and the global export table is updated with
references to all functions exported from the module.
When a new instance of the module is loaded, the code of the previous
instance becomes old, and all export entries referring to the
previous instance are removed. After that, the new instance is loaded
as for the first time, and becomes current.
Both old and current code for a module are valid, and can even be executed
concurrently. The difference is that exported functions in old code are
unavailable. Hence, a global call cannot be made to an exported function in old
code, but old code can still be executed because of processes lingering in it.
If a third instance of the module is loaded, the code server removes (purges)
the old code and any processes lingering in it are terminated. Then the third
instance becomes current and the previously current code becomes old.
For more information about old and current code, and how to make a process
switch from old to current code, see section Compilation and Code Loading in the
Erlang Reference Manual.

 Native Coverage Support

In runtime systems that use the JIT, native coverage is a light-weight
way to find out which functions or lines that have been executed, or
how many times each function or line has been executed.
Change
The support for native coverage was added in Erlang/OTP 27.

Native coverage works by instrumenting code at load-time. When a
module has been instrumented for native coverage collection it is not
possible to later disable the coverage collection, except by reloading
the module. However, the overhead for keeping coverage collection
running is often neligible, especially for coverage
mode function that only keeps track of which
functions that have been executed.
The cover tool in the Tools application will automatically use the
native coverage support if the runtime system supports it.
It is only necessary to use the functionality described next if
cover is not sufficient, for example:
	If one wants to collect coverage information for the code that runs
when the runtime system is starting (module init and so on).
cover can only be used when the Erlang system has started, and
it will reload every module that is to be analyzed.

	If it is necessary to collect coverage information with the absolute
minimum disturbance of the test system. cover always counts how
many times each line is executed (coverage mode line_counters),
but by using native coverage one can use a less expensive coverage
mode such as function, which has almost negligible overhead.

 Short summary of using native coverage

If the line or line_counters coverage mode is to be used,
the code to be tested must be compiled with option
line_coverage.
Use set_coverage_mode(Mode) to set a
coverage mode for all code subsequently
loaded, or set it with option +JPcover
for erl.
Optionally reset coverage information for all
modules that are to be tested by calling
reset_coverage(Module).
Run the code whose coverage information is to be collected.
Read out the counters for all interesting modules by calling
get_coverage(Level, Module), where Level
is either function or line.

 The other native coverage BIFs

The following BIFs are sometimes useful, for example to fail gracefully
if the runtime system does not support native coverage:
	coverage_support() - check whether
the runtime system supports native coverage

	get_coverage_mode() - get the current
coverage mode

	get_coverage_mode(Module) - get the coverage
mode for module Module

 Argument Types and Invalid Arguments

Module and application names are atoms, while file and directory names are
strings. For backward compatibility reasons, some functions accept both strings
and atoms, but a future release will probably only allow the arguments that are
documented.
Functions in this module generally fail with an exception if they are passed an
incorrect type (for example, an integer or a tuple where an atom is expected).
An error tuple is returned if the argument type is correct, but there are some
other errors (for example, a non-existing directory is specified to
set_path/1).

 Error Reasons for Code-Loading Functions

Functions that load code (such as load_file/1) will return
{error,Reason} if the load operation fails. Here follows a description of the
common reasons.
	badfile - The object code has an incorrect format or the module name in
the object code is not the expected module name.

	nofile - No file with object code was found.

	not_purged - The object code could not be loaded because an old version
of the code already existed.

	on_load_failure - The module has an
-on_load function that failed when it
was called.

	sticky_directory - The object code resides in a sticky directory.

 Summary

 Types

 erl_ddll - kernel v10.2

erl_ddll

Dynamic driver loader and linker.
This module provides an interface for loading and unloading Erlang linked-in
drivers in runtime.
Note
This is a large reference document. For casual use of this module, and for
most real world applications, the descriptions of functions load/2 and
unload/1 are enough to getting started.

The driver is to be provided as a dynamically linked library in an object code
format specific for the platform in use, that is, .so files on most Unix
systems and .ddl files on Windows. An Erlang linked-in driver must provide
specific interfaces to the emulator, so this module is not designed for loading
arbitrary dynamic libraries. For more information about Erlang drivers, see
erl_driver .

When describing a set of functions (that is, a module, a part of a module, or an
application), executing in a process and wanting to use a ddll-driver, we use
the term user. A process can have many users (different modules needing the
same driver) and many processes running the same code, making up many users of
a driver.
In the basic scenario, each user loads the driver before starting to use it and
unloads the driver when done. The reference counting keeps track of processes
and the number of loads by each process. This way the driver is only unloaded
when no one wants it (it has no user). The driver also keeps track of ports that
are opened to it. This enables delay of unloading until all ports are closed, or
killing of all ports that use the driver when it is unloaded.

The interface supports two basic scenarios of loading and unloading. Each
scenario can also have the option of either killing ports when the driver is
unloading, or waiting for the ports to close themselves. The scenarios are as
follows:
	Load and Unload on a "When Needed Basis" - This (most common) scenario
simply supports that each user of the driver loads it
when needed and unloads it when no longer needed. The driver is always
reference counted and as long as a process keeping the driver loaded is still
alive, the driver is present in the system.
Each user of the driver use literally the same
pathname for the driver when demanding load, but the
users are not concerned with if the driver is already
loaded from the file system or if the object code must be loaded from file
system.
The following two pairs of functions support this scenario:
	load/2 and unload/1 - When using the load/unload interfaces, the
driver is not unloaded until the last port using the driver is closed.
Function unload/1 can return immediately, as the
users have no interest in when the unloading occurs.
The driver is unloaded when no one needs it any longer.
If a process having the driver loaded dies, it has the same effect as if
unloading is done.
When loading, function load/2 returns ok when any instance
of the driver is present. Thus, if a driver is waiting to get unloaded
(because of open ports), it simply changes state to no longer need
unloading.

	load_driver/2 and unload_driver/1 - These interfaces are intended to
be used when it is considered an error that ports are open to a driver that
no user has loaded. The ports that are still open when
the last user calls
unload_driver/1 or when the last process having the
driver loaded dies, are killed with reason driver_unloaded.
The function names load_driver and unload_driver are kept for backward
compatibility.

	Loading and Reloading for Code Replacement - This scenario can occur if
the driver code needs replacement during operation of the Erlang emulator.
Implementing driver code replacement is a little more tedious than Beam code
replacement, as one driver cannot be loaded as both "old" and "new" code. All
users of a driver must have it closed (no open ports)
before the old code can be unloaded and the new code can be loaded.
The unloading/loading is done as one atomic operation, blocking all processes
in the system from using the driver in question while in progress.
The preferred way to do driver code replacement is to let one single process
keep track of the driver. When the process starts, the driver is loaded. When
replacement is required, the driver is reloaded. Unload is probably never
done, or done when the process exits. If more than one
user has a driver loaded when code replacement is
demanded, the replacement cannot occur until the last "other"
user has unloaded the driver.
Demanding reload when a reload is already in progress is always an error.
Using the high-level functions, it is also an error to demand reloading when
more than one user has the driver loaded.
To simplify driver replacement, avoid designing your system so that more than
one user has the driver loaded.
The two functions for reloading drivers are to be used together with
corresponding load functions to support the two different behaviors concerning
open ports:
	load/2 and reload/2 - This pair of functions is used when reloading is
to be done after the last open port to the driver is closed.
As reload/2 waits for the reloading to occur, a misbehaving
process keeping open ports to the driver (or keeping the driver loaded) can
cause infinite waiting for reload. Time-outs must be provided outside of the
process demanding the reload or by using the low-level interface
try_load/3 in combination with driver monitors.

	load_driver/2 and reload_driver/2 - This pair of functions are used
when open ports to the driver are to be killed with reason driver_unloaded
to allow for new driver code to get loaded.
However, if another process has the driver loaded, calling reload_driver
returns error code pending_process. As stated earlier, the recommended
design is to not allow other users than the "driver
reloader" to demand loading of the driver in question.

 See Also

erl_driver(4), driver_entry(4)

 Summary

 Types

 error_handler - kernel v10.2

error_handler

Default system error handler.
This module defines what happens when certain types of errors occur.
You can change the error handler of a process by calling
erlang:process_flag(error_handler, NewErrorHandler).

 Notes

The code in error_handler is complex. Do not change it without fully
understanding the interaction between the error handler, the init process of
the code server, and the I/O mechanism of the code.
Code changes that seem small can cause a deadlock, as unforeseen consequences
can occur. The use of input is dangerous in this type of code.

 Summary

 Functions

 heart - kernel v10.2

heart

Heartbeat monitoring of an Erlang runtime system.
This modules contains the interface to the heart process. heart sends
periodic heartbeats to an external port program, which is also named heart.
The purpose of the heart port program is to check that the Erlang runtime
system it is supervising is still running. If the port program has not received
any heartbeats within HEART_BEAT_TIMEOUT seconds (defaults to 60 seconds), the
system can be rebooted.
An Erlang runtime system to be monitored by a heart program is to be started
with command-line flag -heart (see also erl(1)). The
heart process is then started automatically:
% erl -heart ...
If the system is to be rebooted because of missing heartbeats, or a terminated
Erlang runtime system, environment variable HEART_COMMAND must be set before
the system is started. If this variable is not set, a warning text is printed
but the system does not reboot.
To reboot on Windows, HEART_COMMAND can be set to heart -shutdown (included
in the Erlang delivery) or to any other suitable program that can activate a
reboot.
The environment variable HEART_BEAT_TIMEOUT can be used to configure the heart
time-outs; it can be set in the operating system shell before Erlang is started
or be specified at the command line:
% erl -heart -env HEART_BEAT_TIMEOUT 30 ...
The value (in seconds) must be in the range 10 < X <= 65535.
When running on OSs lacking support for monotonic time, heart is susceptible
to system clock adjustments of more than HEART_BEAT_TIMEOUT seconds. When this
happens, heart times out and tries to reboot the system. This can occur, for
example, if the system clock is adjusted automatically by use of the Network
Time Protocol (NTP).
If a crash occurs, an erl_crash.dump is not written unless environment
variable ERL_CRASH_DUMP_SECONDS is set:
% erl -heart -env ERL_CRASH_DUMP_SECONDS 10 ...
If a regular core dump is wanted, let heart know by setting the kill signal to
abort using environment variable HEART_KILL_SIGNAL=SIGABRT. If unset, or not
set to SIGABRT, the default behavior is a kill signal using SIGKILL:
% erl -heart -env HEART_KILL_SIGNAL SIGABRT ...
If heart should not kill the Erlang runtime system, this can be indicated
using the environment variable HEART_NO_KILL=TRUE. This can be useful if the
command executed by heart takes care of this, for example as part of a specific
cleanup sequence. If unset, or not set to TRUE, the default behaviour will be
to kill as described above.
% erl -heart -env HEART_NO_KILL 1 ...
Furthermore, ERL_CRASH_DUMP_SECONDS has the following behavior on heart:
	ERL_CRASH_DUMP_SECONDS=0 - Suppresses the writing of a crash dump file
entirely, thus rebooting the runtime system immediately. This is the same as
not setting the environment variable.

	ERL_CRASH_DUMP_SECONDS=-1 - Setting the environment variable to a
negative value does not reboot the runtime system until the crash dump file is
completely written.

	ERL_CRASH_DUMP_SECONDS=S - heart waits for S seconds to let the
crash dump file be written. After S seconds, heart reboots the runtime
system, whether the crash dump file is written or not.

In the following descriptions, all functions fail with reason badarg if
heart is not started.

 Summary

 Types

 os - kernel v10.2

os

Operating system-specific functions.
The functions in this module are operating system-specific. Careless use of
these functions results in programs that will only run on a specific platform.
On the other hand, with careful use, these functions can be of help in enabling
a program to run on most platforms.
Note
The functions in this module will raise a badarg exception if their
arguments contain invalid characters according to the description in the "Data
Types" section.

 Summary

 Types

 auth - kernel v10.2

auth

 This module is deprecated. See each function for what to use instead.

Erlang network authentication server.
For a description of the Magic Cookie system, refer
to Distributed Erlang in the Erlang Reference
Manual.

 Summary

 Types

 erl_boot_server - kernel v10.2

erl_boot_server

Boot server for other Erlang machines.
This server is used to assist diskless Erlang nodes that fetch all Erlang code
from another machine.
This server is used to fetch all code, including the start script, if an Erlang
runtime system is started with command-line flag -loader inet. All hosts
specified with command-line flag -hosts Host must have one instance of this
server running.
This server can be started with the Kernel configuration parameter
start_boot_server.
The erl_boot_server can read regular files and files in archives. See code
and erl_prim_loader in ERTS.
Warning
The support for loading code from archive files is experimental. It is
released before it is ready to obtain early feedback. The file format,
semantics, interfaces, and so on, can be changed in a future release.

 SEE ALSO

erts:init, erts:erl_prim_loader

 Summary

 Functions

 erl_epmd - kernel v10.2

erl_epmd

Erlang interface towards epmd
This module communicates with the EPMD daemon, see epmd.
To implement your own epmd module please see
ERTS User's Guide: How to Implement an Alternative Node Discovery for Erlang Distribution

 Summary

 Functions

 erpc - kernel v10.2

erpc

Enhanced Remote Procedure Call
This module provide services similar to Remote Procedure Calls. A remote
procedure call is a method to call a function on a remote node and collect the
answer. It is used for collecting information on a remote node, or for running a
function with some specific side effects on the remote node.
This is an enhanced subset of the operations provided by the rpc module.
Enhanced in the sense that it makes it possible to distinguish between returned
value, raised exceptions, and other errors. erpc also has better performance
and scalability than the original rpc implementation. However, current rpc
module will utilize erpc in order to also provide these properties when
possible.
In order for an erpc operation to succeed, the remote node also needs to
support erpc. Typically only ordinary Erlang nodes as of OTP 23 have erpc
support.
Note that it is up to the user to ensure that correct code to execute via erpc
is available on the involved nodes.
Note
For some important information about distributed signals, see the
Blocking Signaling Over Distribution
section in the Processes chapter of the Erlang Reference Manual. Blocking
signaling can, for example, cause timeouts in erpc to be significantly
delayed.

 Summary

 Types

 global - kernel v10.2

global

A global name registration facility.
This module consists of the following services:
	Registration of global names
	Global locks
	Maintenance of the fully connected network

As of OTP 25, global will by default prevent overlapping partitions due to
network issues by actively disconnecting from nodes that reports that they have
lost connections to other nodes. This will cause fully connected partitions to
form instead of leaving the network in a state with overlapping partitions.
Warning
Prevention of overlapping partitions can be disabled using the
prevent_overlapping_partitions
Kernel parameter, making global behave like it used to do. This is,
however, problematic for all applications expecting a fully connected network
to be provided, such as for example mnesia, but also for global itself. A
network of overlapping partitions might cause the internal state of global
to become inconsistent. Such an inconsistency can remain even after such
partitions have been brought together to form a fully connected network again.
The effect on other applications that expects that a fully connected network
is maintained may vary, but they might misbehave in very subtle hard to detect
ways during such a partitioning. Since you might get hard to detect issues
without this fix, you are strongly advised not to disable this fix. Also
note that this fix has to be enabled on all nodes in the network in order
to work properly.

Note
None of the above services will be reliably delivered unless both of the
kernel parameters connect_all and
prevent_overlapping_partitions
are enabled. Calls to the global API will, however, not fail even though
one or both of them are disabled. You will just get unreliable results.

These services are controlled through the process global_name_server that
exists on every node. The global name server starts automatically when a node is
started. With the term global is meant over a system consisting of many Erlang
nodes.
The ability to globally register names is a central concept in the programming
of distributed Erlang systems. In this module, the equivalent of the
register/2 and whereis/1 BIFs (for local name
registration) are provided, but for a network of Erlang nodes. A registered name
is an alias for a process identifier (pid). The global name server monitors
globally registered pids. If a process terminates, the name is also globally
unregistered.
The registered names are stored in replica global name tables on every node.
There is no central storage point. Thus, the translation of a name to a pid is
fast, as it is always done locally. For any action resulting in a change to the
global name table, all tables on other nodes are automatically updated.
Global locks have lock identities and are set on a specific resource. For
example, the specified resource can be a pid. When a global lock is set, access
to the locked resource is denied for all resources other than the lock
requester.
Both the registration and lock services are atomic. All nodes involved in these
actions have the same view of the information.
The global name server also performs the critical task of continuously
monitoring changes in node configuration. If a node that runs a globally
registered process goes down, the name is globally unregistered. To this end,
the global name server subscribes to nodeup and nodedown messages sent from
module net_kernel. Relevant Kernel application variables in this context are
net_setuptime, net_ticktime,
and dist_auto_connect.
The name server also maintains a fully connected network. For example, if node
N1 connects to node N2 (which is already connected to N3), the global name
servers on the nodes N1 and N3 ensure that also N1 and N3 are connected.
In this case, the name registration service cannot be used, but the lock
mechanism still works.
If the global name server fails to connect nodes (N1 and N3 in the example),
a warning event is sent to the error logger. The presence of such an event does
not exclude the nodes to connect later (you can, for example, try command
rpc:call(N1, net_adm, ping, [N2]) in the Erlang shell), but it indicates a
network problem.
Note
If the fully connected network is not set up properly, try first to increase
the value of net_setuptime.

 See Also

global_group, net_kernel

 Summary

 Types

 global_group - kernel v10.2

global_group

Grouping nodes to global name registration groups.
This module makes it possible to partition the nodes of a system into global
groups. Each global group has its own global namespace, see global.
The main advantage of dividing systems into global groups is that the background
load decreases while the number of nodes to be updated is reduced when
manipulating globally registered names.
The Kernel configuration parameter global_groups
defines the global groups:
{global_groups, [GroupTuple :: group_tuple()]}
For the processes and nodes to run smoothly using the global group
functionality, the following criteria must be met:
	An instance of the global group server, global_group, must be running on
each node. The processes are automatically started and synchronized when a
node is started.
	All involved nodes must agree on the global group definition, otherwise the
behavior of the system is undefined.
	All nodes in the system must belong to exactly one global group.

In the following descriptions, a group node is a node belonging to the same
global group as the local node.

 Notes

	In the situation where a node has lost its connections to other nodes in its
global group, but has connections to nodes in other global groups, a request
from another global group can produce an incorrect or misleading result. For
example, the isolated node can have inaccurate information about registered
names in its global group.
	Function send/2,3 is not secure.
	Distribution of applications is highly dependent of the global group
definitions. It is not recommended that an application is distributed over
many global groups, as the registered names can be moved to another global
group at failover/takeover. Nothing prevents this to be done, but the
application code must then handle the situation.

 See Also

global, erl

 Summary

 Types

 net_adm - kernel v10.2

net_adm

Various Erlang net administration routines.
This module contains various network utility functions.

 Files

File .hosts.erlang consists of a number of host names written as Erlang terms.
It is looked for in the current work directory, the user's home directory, and
$OTPROOT (the root directory of Erlang/OTP), in that order.
The format of file .hosts.erlang must be one host name per line. The host
names must be within quotes.
Example:
'super.eua.ericsson.se'.
'renat.eua.ericsson.se'.
'grouse.eua.ericsson.se'.
'gauffin1.eua.ericsson.se'.
^ (new line)

 Summary

 Types

 net_kernel - kernel v10.2

net_kernel

Erlang networking kernel.
The net kernel is a system process, registered as net_kernel, which must be
operational for distributed Erlang to work. The purpose of this process is to
implement parts of the BIFs spawn/4 and
spawn_link/4, and to provide monitoring of the network.
An Erlang node is started using command-line flag -name or -sname:
$ erl -sname foobar
It is also possible to call net_kernel:start(foobar, #{})
directly from the normal Erlang shell prompt:
1> net_kernel:start(foobar, #{name_domain => shortnames}).
{ok,<0.64.0>}
(foobar@gringotts)2>
If the node is started with command-line flag -sname, the node name is
foobar@Host, where Host is the short name of the host (not the fully
qualified domain name). If started with flag -name, the node name is
foobar@Host, where Host is the fully qualified domain name. For more
information, see erl.
Normally, connections are established automatically when another node is
referenced. This functionality can be disabled by setting Kernel configuration
parameter dist_auto_connect to never, see kernel(6). In
this case, connections must be established explicitly by calling
connect_node/1.
Which nodes that are allowed to communicate with each other is handled by the
magic cookie system, see section Distributed Erlang
in the Erlang Reference Manual.
Warning
Starting a distributed node without also specifying
-proto_dist inet_tls will expose the node
to attacks that may give the attacker complete access to the node and in
extension the cluster. When using un-secure distributed nodes, make sure that
the network is configured to keep potential attackers out. See the
Using SSL for Erlang Distribution User's Guide
for details on how to setup a secure distributed node.

 Summary

 Types

 pg - kernel v10.2

pg

Distributed named process groups.
This module implements process groups. A message can be sent to one, some, or
all group members.
Up until OTP 17 there used to exist an experimental pg module in stdlib.
This pg module is not the same module as that experimental pg module, and
only share the same module name.
A group of processes can be accessed by a common name. For example, if there is
a group named foobar, there can be a set of processes (which can be located on
different nodes) that are all members of the group foobar. There are no
special functions for sending a message to the group. Instead, client functions
are to be written with the functions get_members/1 and get_local_members/1
to determine which processes are members of the group. Then the message can be
sent to one or more group members.
If a member terminates, it is automatically removed from the group.
A process may join multiple groups. It may join the same group multiple times.
It is only allowed to jo